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SUMMARY

Software portability is one of the key methods of combating the
software crisis brought on by plummetting hardware costs and prolifera~
tion of new computer designs. Use of High Order Languages (HOL's)
assist this effort, as long as the corresponding compilers can be easily
generated to match a given HOL to any new machine architecture. The
Retargetable Compiler is such a compiler, in which an HOL program may
be reduced to high quality code for a given machine. The compiler should

be automatically produced from a formal description of the machine.

In this report we will review the current level of technology cover-
ing compiler theory, and especially compiler-compiler theory. We will
establish bounds on the kinds of languages and machines we intend to be
able to handle with our design, and finally we will present a design
for a retargetable compiler system based on our research performed un-

der this contract.
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EVALUATION

The objective of this effort was to develoﬁ design recommendations
for a tool to automatically build the code generator portion of a com-
piler (automatically retarget) from a formal description of the target
machine. Such a tool would enable the use of manpower efficient high
order computer programming languages on more Air Force software system
developments. Since software development and maintenance is labor
intensive, this effort is obviously responsive to RADC TPQ-R5A, "Soft-
ware Cost Reduction".

This effort met the objective with a thoroughly analyzed set
of recommendations for such a tool. The present plan is to develop a
"retargetable” compiler for the new common DOD programming language
known as Ada. It is hoped that the retargetable compiler for Ada can
commence development in FY82.

SAMUEL A. DI NITTO, JR
Project Engineer
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1. INTRODUCTION

In this section, we discuss the current level of compiler. tech-
nology, including its strengths and weaknesses, as well as our goals

under the Retargetable Compiler project.

1.1 The Current State of Compiler Technology

Since the introduction of high order languages, both the theory
and practice of language compilation have been advanced. One of the
more significant factors in this advancement is the use of meta~lan-
guages to describe the syntax of the target language. Two beneficial
effects have resulted. First, the front-end parts of compilers, which
decompose the lexical/syntactic structure of the source language, have
been generalized to the point that they can operate directly from the
formal specification of the source language. Thus, source decomposi-
tion is no longer considered a major hurdle in compiler development.
The second benefit of the use of meta-languages is simplification of
programming language through a tendency to use fewer and more system-
atic syntactic structures. While this has only a quantitative effect ;
on compilers, it is a significant advancement in practical software

development.

Success with formalization of language syntax has led to the de-

sire for some formalizations of semantics and program flow. Making
use of these formalizations, the compilation process has been evolved
into a two step process, in which the scurce program is first trans-

lated into an intermediate language, and then into the target language.

The intermediate language is designed to express only the semantics
of the program, thereby isolating the syntax of the source language
from that of the target language. There is a large variety of global
and local optimizations which are most conveniently performed on the

intermediate language form of a program. These optimizations (which




should more properly be called "“improvements'") are transformations of
the program which do not alter the semantics of the program as speci-
fied by its source language form, and which reduce some compile time
measure of program cost. The cost function to be redgced is usually
program size, estimated program speed, or a combination. The optimiza-
tions most easily performed on the intermediate language program (before
code generation) are often called '"machine independent optimizations'.
They can be performed regardless of the target machine, although their
desirability may depend on certain aspects of the target machine.

There is a large body of theory on obtaining and using the data flow
information on which global optimization is based, and a less compre-
hensive though growing body of experience in using machine independent

optimizations.

1.2 Problem Areas in Compiler Technology

After a source program has undergone semantic analysis and ma-
chine independent optimization, it must be translated into the target
language. This translation is from an intermediate language, which
expresses the program being compiled. The most common approach is to
generate target code based upon the elements of the intermediate lan-
guage, with consideration given to the context of each such element.
This approach, termed the "ad hoc" approach, is basically a heuristic
appraach as opposed to one based strictly on a theory of code genera-
tion. There is more theory known concerning register allocation stra-
tegies, but up to this point the theory is applicable only for special
cases, such as single register machines or single code blocks without
loops. The practical algorithm for register allocation are again
heuristics. This lack of underlying theory is a major obstacle to
automatic generation of the register allocation and code generation

phases of a compiler.

Another area in which there is plenty of information and little

organization is target dependent optimization. This includes all




transformations applied to either intermediate or target forms which

can be shown to constitute "improvement" of the program only when
characteristics df the target are given. Most of these optimizations
are obvious, and of direct benefit in reducing target program size or
execution time, but they all seem to be unique in comparison with each
other. They do not form categories or patterns within a coherent
theory. Each is its own category, and each is either completely appli-
cable or completely in-applicable for each target machine. If a fully
generalized theory of code generation existed, it would have to be
sufficiently adaptive to the target architecture that it would pro-
bably eliminate the need for our present distinction between code gen~

eration, register allocation, and target dependent optimization.

1.3 Other Compiler Development Problems

In developing any software project, it is valuable to have not
only a clean set of objectives, but also a way of measuring progress
toward those objectives. A compiler may well be an extreme case in
this regard. Compilers possess many characteristics, and meeting an
objective relative to one characteristic often conflicts with others.
In the course of developing a compiler, these conflicts must be worked
out through compromise. Such compromises can be made rationally only
if the developer knows the degree to which he is trading one thing
for another. Hence, it is especially important to have techniques for
measuring progress toward objectives, and for analyzing the compromise
between them. For example, consider two typical objectives: to mini-
mize target program size(s), and to minimize target program execution
time(t). It is simple enough to choose between two optimization tech-
niques if the difference between those techniques affects only s or
only t, but this is rarely the case in light of potential subsequent
optimizations. We need an algorithm to trade between s and t. Perhaps
it is to minimize (s * t), (As + t), or (sI + tJ). The algorithm it-
self may not matter as much as the fact that it may change from one

segment of the program to another (e.g., local minimization of t has




more affect on global t if the locale is in a loop). If we define
optimization as a tendency toward less comsumption of a single resource
(or fixed proportion of several resources), then we can optimize only
if we can determine the consumption of that single resource. 1In fact,
most optimization decisions can be made based on a simple resource

(s, or t) and within a limited context. But without a philosophy for
resource definition and comparative measure, we will not have a con-

sistent and justifiable approach to the more complex optimizations.

When measuring the quality of a compiler some attention might be
given to the cost of compilation. The compile-time resources that
should be spent for a given improvement in object program quality de-
pend on the intended use of the compiler. For the compiler writer to
determine the best optimization and code generation strategies to apply,
he will need to be able to make estimates of the cost/benefit ratios

of the alternate techniques.

S AN —

1.4 The Retargetable Compiler Goals i

Much of theory and practice of compilation and compiler generation
has been developed from the bottom up. That is, only specific problems
have been addressed, and these only in fairly narrow contexts. This
is AOt to discount the value of the work already done. We would like
to place this existing knowledge in a framework of needs and require-
ments that is derived from the top down. This would clarify the gaps
in our knowledge, and the consequent objective of closing those gaps.
Additionally, it would help us bring some sense and uniformity to this

fragmented field, and could lead to a philosophical foundation which

is necessaryv for rapid progress.

The whole field of automatic compiler generation is not vet mature,
and is not likely to become so for some time. We can, however, make

use of what we do know provided that we are practical. Toward this

end, we intend to concentrate in areas of theory and technology which




appear to have the greater pay-offs in features that are desirable in
a compiler generator. Those areas which have minimal pay-off, or which
cannot be implemented without a great expense will be addressed only

in regard to possible future work. In this way, we will provide the
basis for a practical retargetable compiler generator which exhibits

good balance between retargeting effort and target program quality.




2. SCOPE

In this section we will deal with those constraints which we feel
realistically limit the goals of the retargetable compiler, and there-

by define the goals of this work.

2.1 Languages of Interest

The programming languages for which retargetability would be use-
ful are legion, and more are developed every day. Our approach to op-
timization and code generation issues are best served by limiting the
languages to those which handle the data structures for which the
general purpose machines of today are designed: integer and real
arithmetic, and composites of these. Some other data types, which are
to some extent machine supported, are either not universal enough (e.g.,
decimal arithmetic) or not uniformly treated (e.g., byte strings)
across the range of computers of interest. The languages included are
those known as either "algebraic' languages, or "system programming"
languages, and include FORTRAN, BASIC, ALGOL, PASCAL, BLISS, and, in
particular JOVIAL and Ada. We exclude those languages which require
interpretation or extreme run-time library support, such as SNOBOL,
LISP.and APL. These languages are generally characterized by their

support of some specific data structure such as strings or lists.

The reasons for this emphasis on languages which are machine
data-structure supported are that they are the ones for which extensive
optimization strategies and clever code generation procedures will pro-
vide the best improvements in the finished object code. Those languages
which are heavily run-time supported (in order to handle data struc-
tures divorced from existing machine capabilities) are not so readily
optimal - most such work is performed in writing the run-time support

package for each machine.




Note, however, that it will probably be impossible to build any
compiler for any machine without some kind of run-time support avail-
able, particularly in the areas of input/output processing, storage

allocation, and other operating system interfaces.

2.2 Target Machines

The choice of target machine for the retargetable compiler must

likewise be limited. We must (at least for this report) discard the

special purpose machines such as array processors, and those specialized
for high level languages, such as pure stack machines. We will not be
considering machines which are designed to specifically implement paral-
lel processes, except insofar as they will perform as a single proces-

sor on the target code.

Note that these exclusions do not seriously limit the range of
general purpose processors in use today. We do plan to be able to
generate code for one address(Intel 8080), two address (PDP-11), three
address (VAX) and general register architectures (S/370, 1108) as well
as combinations of these sets (MODCOMP). This will include most of
the micro-processors available today, as well as most minis and main-

frames, and even the classes of micro-code known as "vertical'.

The primary reasons for the restrictions on the machine applica-
bility is the lack of unifying compiler theory across all the more
sperial purpose machines. The somewhat tenuous existing theory of
machine-independent optimization, for example, does not at all address

the equivalent problem in truly parallel processes.

Finally, the retargetable compiler is envisioned to be just that -
a compiler not an interpreter. We will not discuss such techniques as
run-time monitoring (in the sense of Knuth's [Knu7uluse of the term)
and dynamic optimization, since these techniques are not yet practically
useable. They are indeed subjects for future research, and future de-
sign of the Retargetable Compiler should allow for the possibilities of

such techniques.




3. THE PROBLEM

3.1 Interpretation of the SOW

The Statement of Work [RFP] for the Retargetable Compiler con-
tract is broken into two parts:
- investigation of ways and means of automatic code genera-
tion, and
- “detailed recommendations for the design'" of a retargetable
compiler.
The first section contains three primary areas of research:
- the CDL to drive the code generator must be specified/
developed;
- a complete set of optimizations, driven by the CDL descrip-
tion, must be specified; and
= well specified intermediate representation must be
developed.
The last section of the SOW specifies that the design must include

implementations for J73/1 and Ada.

We will present, in section 4.0 of this report, both our design
ané the algorithms we feel fill the requirements of a multi-machine
environment. In this section, we will specifically address several of
the issues covered by our research into Retargetable Compiler methods,

and address the J73/I and Ada requirements in particular.

The SOW assumes that compiler front end technology is well enough
advanced that there is no need to go into that part of the retargetable
compiler. As far as the research portion of the SOW is concerned, this
is a correct assumption. However, we feel the need to discuss the

front end processing in the system design for four reasons:




The requirement that we specify the intermediate language (which
is input to code generation and output from the compiler front-
end) infers that the front-end must supply said language. Unless
we choose some already existing front-end and its intermediate
language or equivalent, then we must at least hypothesize a
front-end meeting this requirement.

Some optimizations of the machine-independent, flow aralysis type
require data concerning the semantics of the language being
translated, the generation of which is not among the capabilities
of currently existing compiler-compilers. This will be considered
in more detail when discussing the intermediate language.

The final paragraph in the SOW requires the design to be appli-
cable to (at least) two different languages. This requirement is
most readily compiled with by designing a language definition
driven compiler~compiler front-end.

Finally, from a systems engineering point of view it is best to
design the entire system, both front-end and back-end, together,
in order to avoid interface problems and promote a uniform approach

to the entire retargetable compiler problem.

With these points in mind, we will treat the design of a complete com-

piler-generator rather than just a code-generator generator.

3.2 Research Topics

able

There are five primary areas of research connected with the retarget-

compiler:

computer description languages;
intermediate languages;

machine independent optimization;
code generation techniques;

machine dependent optimizations.
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3.2.1 Computer Description Languages

Current code generation techniques are oriented toward an instruction
set processor. Code generation is seen as a process of producing machine
language instructions which are interpreted by some target machine. This
interpretation cycle assumes the execution of one instruction at a time, with
the instructions being retrieved from an instruction memory, and with the
ability to make the sequence of execution dependent on data values. Addi-
tionally, current code generation techniques assume a main data memory and
can exploit such common features as high-speed registers, condition codes,
and multi-action instructions. Instructions are assumed to be defined strictly
in terms of the values read from and written into memories. These memories

include main memory, registers, the program counter, and condition codes.

These characteristics of current code generation techniques point to
various traits in a CDL that would be helpful for generating code for a ma-
chine described in that CDL. First, since code generation techniques assume
an interpretation cycle, with the variability between machines being in the
individual instructions, the description language should focus on the behavior
of these individual instructions, providing tools for exact description of
their behavior. The instruction descriptions should be high level, simply
éescribing the mappings from the inputs to the outputs of the instructions.
The description language should require the presence of exactly one program
memory and exactly one, clearly identified program counter. Also needed are
tools for the description of the various memories of the machine. To allow
the code generator tc make optimization choices, the description must give
the costs in time and memory space of the instructions. 1In addition to these
content requirements for the description languages, it is also desirable that
the language be easy to use and of wide applicability so that machine descrip-
tions may be already available from other applications or easy to write 1if

no existing description exists for a machine of interest.

We have examined fourteen languages in use today which describe digital

hardware to some extent. (See Appendix A) These are:
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ISP and derivatives (ISPl, ISPS) (Instruction Set Processor)

CDL and Purdue Extended CDL (Computer Description' Language)

DDL (Digital Design Language)

LALSD (A Language for Automated Logic
and System Design)

SMITE (Software Machine's Implementation
Tool using Emulation)

AHPL (A Hardware Programming Language)

APL (A Programming Language)

MOP (Machine Operations)

CASSANDRE

APDL (Algorithmic Processor Description
Language)

LOGAL (Logic Algorithm Language)

LCD (Language for Computer Design)

ERES (Erlanger Rechner-Entwurfs-Sprache-

Erlangen Computer Description Language)

ConLan (Consensus Language)

MOP, developed by Cattell at CMU, is an obvious candidate based on these
criteria. It was developed for code generation with the above criteria in
mind. It assumes an interpretation cycle, which is not made explicit in the
description, which executes instructions stored in a main memory. 1In fact,
no overall control structure or algorithm is given for the machine, with con-
trol being left to the assumed interpretation cycle. The main memory is also
used to store data. Each instruction is identified and described separately,
with the description giving the fields of the instruction, its operation code,
its costs, and its actions. The actions are described in terms of the input
and output of the instruction. Tools are provided for the exact and clear
description of available memories and how they are accessed by the various
instructions. Clarity of the description here includes the capacity for
automated analysis. Memories are described in terms of width, length, and
function. Also given are the instruction fields and field values needed
to use the various access modes for the various memories. At the same time,

MOP is easy to use, so machine descriptions may be easily prepared.

11




Wide applicability of a CDL is in conflict yith the rest of the above
criteria, and as is almost inevitable, MOP is too specialized for wide appli-
cability. Particularly, its assumption of an interpretation cycle and high
level of description make it unsuitable for many applications. However, ISPS, }
a very general and widely used language can be translated into MOP in an al-
most completely automatic manner [0ak79]. ISPS is a derivative of ISP and
is an easy to use language that can be used at many levels of detail and pro- :
vides very powerful modularization constructs which are useful for both
writing and analyzing descriptions. The data types, accessing mechanisms,
and operators provided by ISPS closely correspond to those existing in cur-
rent computers. These close correspondences make descriptions easy to write

and facilitate the writing of accurate descriptions. The simple control

constructs in ISPS are easy to analyze and closely correspond to those avail-
able in computer hardware. ISPS has some powerful extension mechanisms that
have made it suitable for describing a large number of computers for a wide

range of applications, including a great deal of work at CMU.

It should be noted that the work necessary to produce MOP from ISPS
(symbolic execution, I/0 assertion development, etc.) does not duplicate
much of the work in using MOP for code generation, and thus the use of MOP
as the immediate input to code generation does not introduce extra work,
even when the only available description of a computer is in ISPS. Also,
if no ISPS or MOP description of a machine is available, a MOP description

may be written by hand comparatively quickly and easily.

3.2.2 Intermediate Languages

The Intermediate language is the language used to represent user's pro-
gram between passes of the compiler. In particular, it is the form between
the syntactical/semantic encoding and the code generation phases, and there-
fore at the state where most (not all!) of the language dependent features

are absent, and before any machine dependencies have occurred [CAT78,HW78].

12




Intermediate languages (IL) originally were designed to effectively
carry information between passes of a compiler with little thought given to
making them general. It was soon realized that if a suitable IL could be
developed, then interchangeable front ends and back ends would reduce the
work of producing compilers for n machines and m languages from producing
m x n compilers to m plus n compilers, a significant reduction in effort
[Col74].

With this in wmind, ILs were designed for their own sake, and the ideas
of language/machine independence were first explored. The first such IL was
developed by Mock and Steel [MOS58) and called UNCOL. Later efforts along
the same line include Coleman and Wait's JANUS [Col74, WH78] and Cattell's
TCOL family of ILs [Cat78, SLN79].

Several ILs are rather language dependent, but have come to prominence
because of unique features or special implementation solutions. These in-
clude HALMAT (for HAL compilers) [II74], the JOCIT IL (for JOVIAL/J3) [Dun75]
and OCODE (for BCPL) [Ric71]. An extended consideration of each above named

IL (except UNCOL) is given in Appendix B.

Because of their language independence, JANUS and TCOL are the only
ILs from Appendix B that will be considered as the IL for the Retargetable

Compiler.

JANUS was designed as a universal IL. It provides a large set of opera-
tors and a flexible storage scheme. Its control and data structures are at
a fairly low level, and it uses a stack for intermediate results. It is a
linear language that does not depend on a symbol table and was designed to

be translated by a macro processor.

TCOL was designed by Cattell as a universal IL for use with the MMM

algorithm. TCOL is a class of languages, and TCOLA is a particular member

da
developed at Carnegie-Mellon University. TCOL programs are trees, with

fairly high level data and control constructs.
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The machine independence and extendability of the two languages are

practically equivalent. Although the language independence of TCO is

L
Ada
less than that of JANUS, as mentioned in the appendix this will not be a
practical obstacle, since the compiler~compiler will reduce the effort

needed to adapt to changes in the IL. The considerations left are the level,
temporary storage and suitability for code generation of the two languages.
The first two qualities are important because they affect the suitability

of the languages for code generation. {

JANUS is a language that is very language independent, fairly low-level
and with fairly simple data types. These qualities, and its stack mechanisms
were motivated by the design goal that it be suitable for translation to
machine code by a macro translator. TCOL on the other hand, has high level
control constructs, with high level data types and no explicit stack. This
structure is motivated by the desire to make the IL program easily manipulat-
able by optimizers, code generators, etc. but it makes the translation to

machine code more difficult.

Both JANUS and TCOL are suitable for the optimizations and code gen-
ceration techniques described in this report. TCOL's higher level makes opti-
mizations easicr, however, and its tree structure is conceptually well
suited to tree-matching code generation techniques. TCOL is therefore

Ada
our choice for the Retargetable Compiler IL. :

3.2.3 Machine Independent Optimizations

The theory of machine independent optimizations, as stated before,
has been fairly well explored and a good basis for use has been advanced

to practicality, notably with the BLISS11 compiler [WJW75].

Conceptually these optimizations can be reduced to three classes of
operations: code movemeni, constant folding, and dead code elimination.
The first can be subdivided into the several situations in which moving code

(and subsequent consolidation) may provide greater efficiencies. We will

mention each in turn below.




Constant folding - this optimization results from the appearance of }

expressions involving only constants in the program tree. These expressions
could have resulted from a programmer's explicit expression (PI=3.14159;PI2=
2.*%PI) or implicitly, such as in subscript evaluation (REAL A(5,2); ...
B=A(2,1)). The ability to do constant folding can happen at any time from
first tree build through all the other code movement optimizations, as re-

construction juxtaposes constants that were previously separated.

Dead code elimination -~ some of the optimizations discussed below,
particularly variable and constant propagation, sometimes result in code
which will not be executed under any circumstances. This dead code can be

detected and eliminated.

Both constant folding and dead code elimination always should be effec-
ted as soon as the proper conditions are detected, inasmuch as they always
result in a smaller, more efficient program tree. The remaining methods,
classed as code movements, do not always increase the efficiency for all
desirable measures of efficiency. Therefore, code movements should only be

performed after the cases can be measured and compared in a meaningful way.

Redundant expression elimination - this is the case of a value being
calculated more than once in a code block. Generally, the result of the
first calculation may be saved and used in place of the second calculation.
This kind of optimization appears most frequently as the result of subscript

computations.

Hoisting code motion - when a .71lue is identically computed in each
branch from a flow path, that computation mav be hoisted into the common
path and eliminated in the branches. The same idea allows common statements

made in branches to be dropped below the point where thev flow together.

Rho motion [LCH79] -This optimization attempts to assure that a compu-~

tation is performed only once in a given flow instance. For example:
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Code 1 f (a+b) Code 1 t=a+b
Code 2 t=a+b f(t)
\\\\\\\t Code 2
Code 3 Code 3
g(ath) g(t)

Figure 3.2 Rho Motion Optimization

This motion may not seem useful unless the common path is part of a loop.

In the trivial case, this is known as moving invariant code out of loops.

Strength reduction - This optimization attempts to eliminate expensive
operations through use of less expensive ones. This is particularly useful
for indexing inside loops where an implicit multiplication of a subscript
can be avoided through saving and later adding to the previously calculated
displacement if the subscript is being increased by a constant each time

around the loop.

3.2.4 Code Generation Techniques

The direct final translation into machine or assembly language for the
target machine is code generation. There are several fairly well defined
ways of producing this effect:

- ad hoc code generation

~ macroprocessing

- code generator languages

- machine description - driven techniques

Most of the code generators behind todav's compilers are written using
ad hoc techniques, which means that code to handle ecach construct of its
input i.. hand written as a special case on any particular machine. This is ¢ 3

the brute force method, applied in the absence of any coherent theory
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covering code generation. In order to convert the code generator for any

other machine, a complete rewrite is required, with almost all of the orig-
inal effort being unuseable. The efficiency of the‘code produced is in
direct proportion to the effort expended, as Wulf has demonstrated with the

BLISS 11 compiler.

Macroprocessing is a generalization of the text processing mechanisms

' direct the trans-

found in many assemblers in which user generated '"macros'
lation of text [CHM78 1. They have been used extensively to provide exten-
sions onto many high order languages, and may likewise translate some flat-
tened intermediate structure into assembly source text. The power in the
method is in direct proportion to the power of the macroprocessor used..
Some processors are quite simple and easy to use; the cost is loss of flexi-
bility. The more powerful processors allow flexibility rivalling assembly
languages themselves, at the cost of difficulty in preparing the macros. In
the extreme, writing the macros becomes equivalent to writing the code

generator itself.

The macroprocessor approach fails because the tool itself is too gen-
eral - it cannot take advantage of the reduced functional requirements that
the restricted goal, code generation affords. This weakness in approach
is covered by the code generator languages DNF79!, They are, in effect,
special purpose languages designed for building code generators, and thus
provide the code generation flavor missing f{rom the macroprocessors. Code
generators become much easier to write than in the ad hoc method, but each
one still must be written separately. Again, the quality of the code gen-

erated reflects the skill and effort expended in writing the code generator.

The final method of code generation, using a machine description, breaks
from the previous techniques in that the machine dependent parts of the code
generator are reduced to tables, and are generated automatically, based on a
machine description [Cat78], [Fya77 1, [Gla73]. 1t is true that the descrip-

tion must be supplied for each machine, bu* that seems to be a lesser effort

18
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than hand writing the code generator, and besides, the same description may
be used in several other ways in the compiler and related projects, such
as hardware design verification, diagnostics generation, etc., and thus the
effort is "amortized" across a series of uses. Moreover, the machine de-
scriptions for a number of machines already exist and could conceivably be.

used as is.
With all these considerations in mind, it seems that the machine de-
scription-driven methods of code generation are most appropriate for the

Retargetable Compiler.

3.2.5 Machine Dependent Optimizations

This class of optimizations is not appropriately named, since several

of the optimizations discussed here are largely machine independent.

The single common characteristic of these optimization techniques is
that they can best be performed only after code generation is finished. Some
need to know actual code sizing; some are code to code replacements (or

straight eliminations) for particular code sequences.

The utter lack of theoretical basis for tying these optimizations to-
gether requires that they be treated as totally separate items. All are
machine dependent in the sense that they need to know, for instance, what
a branch instruction locks like, but some need no more than that, whereas

some need much more data concerning the target machine.

Many such operations are available in the literature. Some of the bet-

ter known and more general ones are:

cross jumping - elimination of code on two merging paths which is
identical.
unreachable code - detection and elimination of code between an uncondi-

tional branch and the next label.
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Branch chain elimination - if a branch instruction addresses an uncon-

ditional branch, make it a direct branch to the sécond target.

Redundant code elimination - elimination of instructions that are effec~

tive NOPs to the target machine.

Reversing branch sense - if a conditional branch is followed by an un-
conditional branch, and then the target of the first, the sense of the con-

dition may be changed to eliminate the second braunch.

Superflucus compare - delete compare instructions when previous opera-

tions have already set the condition codes.

Special case literal operands — delete instructions such as OR with

literal 0, etc.

Auto increment modes - some machines can automatically increment or

decrement pointers. Use of these can eliminate explicit incrementation.

Reduction to simpler form - some instructions can be reduced in size
to an equivalent form, such as:
ADD #4,SP = CMP (SP)+, (SP)+
on the PDP 11,

Short form length-dependent instructions - some machines have short
form instructions for use when the target operand is some small relative
distance from the instruction. The algorithm to reduce these is non-trivial

and requires a fair amount of analysis [Szy78].

These optimizations are only examples. No doubt new architectures will

open new opportunities for novel methods of peephole optimization.
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3.3 The J73/I and Ada Requirement

JOVIAL and Ada are both outgrowths of the ALGOL language. JOVIAL in-
itially added byte and bit level constructs in order to expand ALGOL into
a systems programming language, while Ada has been developed from PASCAL in
order to provide PASCAL's data abstraction and modern program structuring

to a language suited for use in embedded computers.

Both languages fall within the language bounds listed in the scope
section of this report. Both are block oriented, procedural, algebraic lan-
guages, and both are syntacticly describable by LALR(1l) grammars. They
therefore will both be amenable to analysis by our automatically generated

syntax analysis (see the next section). They will thus generate language

independent intermediate code, suitable for code generator input.
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4, A SOLUTION DESIGN

Using the studies made in the last section and our own study of the

state of the art, we shall propose in this section a conceptual design for

a retargetable compiler.

We will describe in general terms both the compiler generator and the
compiler architecture itself. This is followed by more detailed discussions
of each module in the back-end of the compiler, which is the area of pri-

mary interest to this report.

Finally, we have attached a more detailed description of our primary
descriptive input, the MOP. We have included this so that the reader may

more readily see the kind of description it is, and the data it contains.

4.1 Compiler Generator Architecture

Input to the generator will be in two sections, a machine description
and a language description. The code for most phases of the generated com-
pilation system will be invariant, with language and machine dependences
described in data supplied by the generator. Lexical analysis may require
a description of the language's lexical structure. Syntax analysis will
require a parse table which includes descriptions of connection point calls.
Semantics routines may require various information about the language, com-

pilation machine and target machine.

Flow analysis will require information about compilation machine data
types for use in constant folding. It will also require a description of
possible transformations. Code generation will need descriptions of the
target instructions to implement each IL construct and a description of the
data types and access modes of the target machines. Memory allocation will
require a description of the physical data types and access modes of the

target machine.
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To produce this information from its input, the generator will need to
do several kinds of processing. It must use standard parser generation
techniques to produce the needed parse tables. A simpler extraction may be
appropriate to give lexical analysis the information it needs. Cattell
has described techniques for extracting the tables code generation needs.
Simpler analysis and extraction are needed to get the information flow an-

alysis and memory allocation need from the machine description.

This leads to identifiable functions for the generator which can be
isolated in modules. A description of the lexical structure may need to be
extracted from the language description. Parse tables must also be genera- f

ted for syntax analysis from the language description. Descriptions of the

target and compilation machine types may be needed by the two code genera-
tion modules, ORD and CC will need possibly distinct semantics and flow
analyses descriptions of the target realizations of TCOL comstructs along

with their costs.

A description of the storage bases, data types, and access modes must

be extracted from the machine description for memory allocation.

4.2 Compiler Architecture

For reliability and simplicity, it is desirable that as much as possi-
ble of the retarget compiler be invariant, written once for all language-

machine pairs. A great deal of research has gone into identifying the lan

guage- and machine-dependent aspects of syntactic analysis, flow analysis,
code generation and resource allocation. The retargetable compiler system
will exploit this work by iscolating the machine and language dependencies

of the above processing in data tables, rather than attempting to synthesize

appropriate code.

The structure of the retargeted compiler will be somewhat similar to

that of the BLISS11 compiler described in ‘WJIJW751. It is pictured in

Figure 4.1,
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Lexical analysis, syntactic analysis, semantic analysis and production
of the IL form of the program will be handled in a single conceptual pass.
These functions are handled by the phases LEX, SYN, SEM and TRL respectively,
Flow analysis, evaluation order determination, storage allocation, code
generation and "peephole" optimization will each be handled by a single

phase in a pass by itself, named FLO, ORD, TNB, CG and FOP, respectively.

To make LEX invariant over all languages would seem overly ambitious,
because of efficiency, the difficulty of formally describing a lexical syn-
tax and the dependence of lexical interpretation on context. Fortran and
PL/1 can be particularly tricky in their lexical structure. In addition,

LEX will need to build the tokens which are used by the SEM routines, which
are supplied by the implementor, so for LEX.to be invariant, it must build
tokens that supply all the information that any SEM routines might need.

This seems hopeless and unproductive. However, for a class of languages
with regular lexical structure these arguments no longer apply and the ad-
vantages of using proven routines and a formal description system become
more compelling. A middle ground is to have invariant scanners to collect
strings of digits, and letters and skip comments and blanks. The implementor
can then write a screener that uses these primitives to ease his coding task.
Also, one can supply a variety of packages appropriate to specific languages
or classes of languages. The choice of lexical analysis strategies is thus
dependent on the class of languages one wishes to address and other design
goals. Only in one way will LEX differ from traditional lexical analyzers:
LEX will not resolve constants which occur in the program. Instead, they
will be stored in a string table just as they occur in the program and will
be converted as required (in FLO and CF for the compiler computer, in CG

for the target).

SYN will be based on syntax-directed pérsing techniques. An LALR(1)
or LL(l) parser generator embedded in the generator can generate the needed
parse tables. SYN can exploit automatic error recovery techniques though

it is probably best to avoid techniques that modify the syntactic stack,

since this will avoid inconsistent calls on the semantic routines simplify-

ing the implementor's task in writing these routines. Since SYN will only
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be written once, it is preferred that it be implemented in a way that eases
the writing of more variable parts of the compilers even if SYN's complexity

is thereby increased.

SEM will be a collection of routines supplied by the implementor to
do the semantic analysis of the source program. The routines are envoked
by SYN as directed by the parse tables, and will determine possessions,
check compatibilities, perform operator identification and attribute coordi-
nation, and call upon TRL routines to build the IL program tree. SEM will
encode in the tree source and target data types and accessing information
for the operands in the tree. To support optimization, SEM will also need
to encode the logical orderings required by the source language, as speci-
fied in the discussion of FLO. Attribute grammars have been proposed as a
way of formally describing the semantics of a language and directing the
semantic analysis of a program, but this technology does not yet seem well

enough understood or efficient enough for use in a practical compiler.

The TRL routines will be invariant and will include generalized symbol
table and IL construction routines. The symbol table routines will need to
support the processing needs for languages with controlled scope (e.g., Ada,
Euclid), explicit aliasing (Fortran), user defined modes, and other features
of existing languages. The IL construction will need to support the speci-
fication of required orderings, source data types and target data tvpes men-
tioned above. The implementor's coding burden will be greatly eased by
these routines and tﬁey will protect the integrity of the symbol table and
IL.

For some languages, such as Pascal and Fortran, LEX, SYN, SEM, and
TRS could operate in parallel as part of the same pass, with analysis of
the program and production of IL proceeding together. For other languages,
such as Ada, multiple analysis passes may be required and production of IL
must be postponed to the final analysis pass. These passes will be imple-

mented by SEM, leaving SYN and TRL unchanged.
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FLO will perform global analysis, doing live/dead analysis on variables,
constant propogation and folding, identifying dead code, dead variables,
common subexpressions, and finding opportunities for code motion and strength
reduction. It will make use of ordering information in the IL. FLO will
use the same IL format as input and output, w{th its functions only being

IL transformations, leaving FLO invariant from compiler to compiler.

ORD will make decisions about potential optimizations identified by
FLO, determine evaluation order and identify temporary names (temporary
results), specifying their lifetimes, preferred target data type, storage

base and access mode.

Cattell has described a method discussed below and in /Cat78]called
MMM, and a data structure, the LOP, useful for approaching this problem.
ORD will output a modified IL tree and a description of required temporary
names. TNB will assign target memories to the various temporary names de-
scribed by ORD. Where possible, TNB will assign multiple temporary names

to a single memory.

CG will use the memory assignments calculated by TNB to implement the
IL program produced by ORD. Again, the MMM and LOP described by Cattell
will be useful. 1In addition, a temporary storage manager will be required
by CG where assignments by TNB make the evaluation order specified by ORD
impossible. The temporary manager would save the values in currently allo-
cated but required memories and then restore the old values later, much in

the manner of conventionai register allocators.

FOP will perform "peephole'" optimizations using as its target machine
code input and output, correcting inefficiencies in CG's output due to code
from widely separated parts of the IL tree becoming adjacent in the produced
machine code. These optimizations include elimination of redundant machine
operations such as loops, loads and stores, and branches to branches. These
transformations are really hard to systemize and will be supplied by the

implementor.




4.3 Compiler Module Algorithms

theory and practice are well established.

Module Generator:

Input Processor
syntax grammar of LALR(1) compiler-compiler
language (e.g., YACC)

Compiler Module:
source program - LALR(1l) parser with

tables

- user supplied lexical
analvzer

- user supplied semantics
rout ines

- TRL tree and table mani-

pulation routines

. Figure 4.2 LEX/SYN/SEM/TRL HIPO Chart

In the remainder of this section we will concentrate on the algorithms
and peculiarities of the '"backend" routines, namely CF, FLO, ORD, TNB, CG,
and FOP. These routines are of the primary interest to retargetable com-

piler study, since, as noted in the SOW and the introduction front-end

Output

LALR(1) syntax

tables

- TCOL program trec

- svmbol table
(including
string and

constant tables)




Module Generator

(no preprocessing for FLO)

Compiler Module:

Input Processor Output
- TCOL program tree - user supplied "safety" - TCOL program tree
- Symbol table decision routines with constants
- FLO processor folded, unused
- CF subroutine code eliminated,

common subexpres-
sions threaded,
and code motions
identified

Figure 4.3 FLO HIPO Chart

4.3.1 FLU - Flow analysis

The FLO module performs data flow analvsis on the program tree, performs
constant propagation and detects other possible FLO and classical optimiza-
tions. The difference between FLO and classical onptimizers is that FLO de-
tects possible global optimizations, but the desirabilitv of performing a
glven transformation is determined later, by ORD. This is the technique

used by Wulf et al. in the BLISSI1 compiler.

A global optimizer needs to determine the lifetime of each variable or
computation (data flow analvsis), and to determine feasible optimizations,
which are motions »r eliminations of computations in the program. Most of
the work performed by the optimizer is language independent. Language de-
pendencics arise in two wavs: limitations on the lifetime of a variable
and limitations on when code motion is legal given the semantics ot the
source language.  To move or eliminate computations, the optimizer must

determine their litetimes, and whether or net relationships between objects

29




can be changed in a given situation. As an example of the effect of lan-

guage semantics on lifetimes, a function call in Fortran may alter any
variable in COMMON. As an example of the effect of semantics on possible
optimization is that in Fortran association and coﬁmutation may always be
applied to multiplication; in Algol this is not true. These effects have
to be taken into account in the optimizer for a given language, and in FLO
user-provided procedures will do this. There are a number of formulations
of global analysis in the literature, some quite recent. The one that will
be used in this discussion is the one developed by Geschke 'Ges721 in his
thesis and used in the BLISS11 compiler. 1Its advantage is that it makes

the isolation of language dependent information simple.

According to Geschke, the language dependencies of FLO can be described

"initial order", ''mecessary constituent", and

by three relations called
"essential predecessor". These encode the information described above, and
are used to derive sets of data flow information which are used to deter-

mine feasible code motions and code eliminations. Procedures to determine

these relationships will be supplied by the compiler writer.

FLO will input a program tree, and proceed down the tree, detecting
common subexpressions and determining the data flow sets mentioned above,
which are then used to determine possible optimizations. Outputs of the
;hase are the program tree with constant folding and dead code elimination
performed and lists of common subexpressions and feasible optimizations. !

These optimizaticns are those mentioned in the section on optimization

techniques (3.2.73).

4.3.2 CF - Constant Folding

The constant folding routine is unique in that it is repeatedlv called
by FLO, ORD, and CC in order to perform constant computations which appear
in the program tree. CF is recalled in each of the routines to perform those

computations uncovered bv adjustments made to the trece by other optimizations.
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Module Generator:

Input Processor Output
- data description - procedures for
portion of MOP bit string to/
description from char string

conversion

routines (for

compiler
machine)
Compiler Module:
- program tree - CF subroutine - program tree,
- symbol table - Conversion routines with constant
expressions
folded

- symbol table

suitably
updated
Figure 4.4 CF HIPO Chart
Module Generator:
Input Processor Output
- MOP description - as described in - condensed table
'cat78] (termed LOP)
Compiler Module:
- program tree from FLO - ORD routine - optimized program -
- LOP - CF subroutine tree including
preferencing
attributes

Figure 4.5 ORD HIPO Chart
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4.3.3 ORD - Tree Ordering

The ORD module's purpose is primarily to perform a preliminary code
generation, in order to collect the data required to intelligently select
among the code movements found possible by the FLO module. ORD also pro-
duces and distributes a number of code-generation derived attributes around

the TCOL tree, for use by the following TNB and CG phases.

The preliminary code generation phase, called SEL, uses an algorithm
named by Cattell the "Maximal Munching Method (MMM)" algorithm ; Cat78'. In
essence, this algorithm artempts to generate assceably code for the largest
part of the code tree (from the top downward) at a time, and then recurse
upon the remaining unmatched branches. Inasmuch as register allocation
has not yet been done the match must make assumptions concerning allocation
of the data leaves and temporary locations generated which mav prove to be
false; however, the need is for approximate time/space valucs for comparison

purposes, so the assumptions made will probably cancel out.

For each code movement possibility indicated bv FLO, a time/space com~
parison will be made, and if the code movement is an improvement, the move-
ment will be marked. The total time and space accumulaticns (as well as
other data, such as probable number of executions, etc.) will be passed to
a user supplied tradeoff routine which returns some measure of qualitv, thus

giving the user control over the goals of the optimization. 1In a final

pass, the tree will be restructured by performing the indicated code movements.

The second phase of ORD, called DEC, performs some kinds ot machine-
dependent attribute determinations and tree decorating. These attributes
include self-complementing operations (i.e., x = -(-x)),use of special
register subsets (i.c., the M instruction on the S/370 places its result
in an even-odd register pair) and taking advantage of the machines effective

address capabilities to perfo.m arithmetic.




The decoration of the program tree with the '"negated" attribute will
allow elimination of redundant negation operations within the tree (note
that "negation'" is used herein generically to indicate any self comple-
menting operation). At any given node in the tree, each of the branches to
that node will report back the value of the negation attribute of that
branch. The DEC pass, upon arriving at that node in an end-order walk of

the tree, will use these values to compute the "best" value of the attributes

to be passed up the tree to higher nodes. This computation is generally
based on the concept of performing the minimum number of negations in order

to satisfy the node's operation.

The pass also has the ability to eliminate negation nodes, to change
addition to subtraction (and vice versa), and to reorder branch phasing

in order to minimize operations. An example of negative propagation might

input the tree:

AN
/N

) H/_\
+ (=)

Figure 4.6 ORD Example Input

where the parenthesized signs represent the values of the negation attributes

at the various nodes. After negation attribute propagation, the tree would

resemble: l {
!
i
1
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*+) ) &) &)

Figure 4.7 ORD Example Output

A similar (and simultaneous) operation would decorate the tree with
attributes which indicate the desirability of having operands to particular
operations computed in certain registers. These particular operations may 4
include, for example, integer multiplication and division on some machines,
which require their inputs in a subset of the available registers. For ex-

ample, the following tree on a machine like the IBM S/370 might produce the

/
LD RO,I
AD RO,J ; RO=I+J

L MV R1,RO ; move to odd reg

. A

/ \ MP RO,K ‘

DV RO,L i

/+\ K ;
I J

code indicated.

Figure 4.8 Register Preference Example

However, the MV instruction could have been eliminated if the ADD node

had known the result was required in an odd register.

Finally, the DEC routine will search for those nodes in the tree which

could be subsumed in the effective address computation of the machine's

hardware. For example, the tree:




|
i/\i
A\
i/ \i.

Figure 4.9 Addressing Mode Example

could be performed in two instructions on many machines if it is recognized
that the result of the substract operation should be bound to an index re-
gister, and thus the add operation may be performed as part of the indexing
operation in the multiply operation. DEC will thus indicate in the attri-
butes of the referencing operator above the add operation the strong pre-

ference for its input to be in an index register.

The negation attribute discussed above will be of no further use once
ORD is complete; however, the register preferencing attributes are needed

by the register allocation phase (TNB) and will remain until then.

Upon completion of ORD then, the program tree will be in its final
"shape', reflecting the final layout of the program. Further phases of the

compiler will not change that basic shape, but rather change node values

and attributes.




Module Generator:

(see Figure 4.5)

Compiler Module:

Input Processor Qutput
- program tree from ORD - TNB routine - program tree
- LOP with locations

and registers
assigned to
temps, variables,

and constants

Figure 4.10 - TNB HIPO Chart

4.3.6 TNB - Temporary Name Binding

The TNB module has the function of binding all user variables, local,
global and temporary, to real computer resources in such a way as to insure
the integrity of the program semantics, and to provide the 'best' use of
those resources. In reality, TNB must balance the requirements of fast ac-

cess and the usually limited number of high speed data locations.

Historically, register allocation has been cne of the really tough com-
putational problems in compiler theory. There are no algorithms currently
known which will guarantee optimal allocation in all usual compilation cir-
cumstances, and many of the better algorithms can become extremelv time con-
suming when some worst cases are attempted. Obviously, what is needed for
now is an algorithm which makes a minimal sacrifice to optimalityv while be-
coming well behaved in a computational sense.

}

The register allocation scheme of Johnsson "Joh75 ! seems to fill these 3
requirements, and in addition, was formulated with requirements for machine

independence.
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Johnssan's algorithm is divided into three phases, which we call GAT,
RNK, and PAK.

GAT is an information gathering phase; it passes over the tree,

assigning each address-valued node a temporary name (TN) represent-

ing the location where its value can be temporarily stored. In addition,
references to TNs and other variables are noted, including whether the value
is changed or simply used. When the pass is complete, a list of "lifetime
pairs" is computed for each TN (i.e., a pair of points in the program be-
tween which the TN is "alive', or in active use). Finally, preferences for
particular storage bases (such as those declared by the access mode deter-

mination part of ORD) are noted.

The RNK phase performs the primary analysis of the TNB module by build-
ing an interference and preference graph for the program being compiled.
The interference graph links those TNs which have overlapping lifetimes.
Thus, two nodes which are connected (over any path) in the interference
graph may not be assigned to the same physical location. The preference
graph links those TNs which should be assigned the same location in order
to avoid extra load and store instructions. These links may be weighted to

express, for instance, an increased preference for TNs within loops.

Finally, the PAK phase distributes the known machine resources to the
TNs by performing the '"packing algorithm'". There is not yet an optimal
packing algorithm known. Many different algorithms and heuristics are em-
ployed at this time, and further research is being done on the problem. A
good algorithm must meet four basic criteria (from Leverett e. al. [LCH791):

"- No two TNs which are connected by an interference arc may be packed

in (allocated to) the same storage lotation.

- The cost measure determined by summing the relative costs of all
TNs, as derived from the usage information discussed in previous
section, and from the knowledge about which storage class each TN

has been packed in, should be kept low (perhaps minimized).
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- The profit measure determined by summing the values of all prefer-

ences arcs that connect two TNs packed ,to identical locations should

be kept high (perhaps maximized).

For some storage classes, there may be a cost associated with using
any member of the storage class, which is fixed regardless of how

the member is used. For instance, a run-time convention for the

preservation of register contents across routine calls may require
that if a register is used by a routine, it must be saved at the be-
ginning of the routine and restored at the end. Thus there is a
cost measure determined by the number of locations (of certain

classes) which are used in a given packing; this should be kept low.'

In a final pass, PAK will distribute its packing decisions throughout
the tree, replacing variables and TNs with register numbers or other sto: ige
base locations. The program tree has now been allocated in memory and iinal

code generation may take place.

Module Generator:

(see Figure 4.5)

Compiler Module:

Input Processor Output
. - program tree from CG - CG routine - linked list of
- LOP instructions

Figure 4.11 CG HIPO Chart
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4.3.5 CG - Code Generation

The code generation phase performs the final pass on the program tree,
converting it to actual assembly language code. It attempts to build lo-
cally optimal sequences taking full advantage of the instruction set and

effective address calculations.

The primary algorithm used to perform this task is Cattell's MMM algo-
rithm, mentioned earlier in the discussion of the ORD module. This algo-
rithm attempts to pattern match the root of the program tree against an
ordered series of trees built by the retargetable compiler generator. This
list of trees is ordered in such a way that the least expensive special
case instruction sequences are searched first in order to satisfy the re-
quirements of a given tree pattern. For instance, if the tree root was an
add operator, the first code segment to try could be an increment instruc-
tion, then an add immediate, then an add register. Since address references
were recognized in the ORD phase and appropriate TNB assignments requested,
most such calculations should match effective address computations repre-
sented by the MOP's access modes. Finally, all unmatched subtrees are in

turn examined by MMM as it recurses on each of them.

As an alternative code sequences are found for each node in the tree,
within the framework of the tree and register assignments made previously
total time/space statistics are compiled and compared, insuring that the
optimal local code is selected. This code, when output in order by a final
end-order tree walk, may still be subject to certain code level optimiza-

tions, which will be the subject of FOP's gentle ministrations.

4.3.6 FOP - Final Optimization

After CG has determined which instructions are to be generated, FOP

will perform final optimizations and emit machine code. Many of these final

optimizations are so machine dependent that no formalism for FOP exists, and

parts of it will have to be coded by hand. Some of these optimizations
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Module Generator:

(none for FOP)

Compiler Module:

Input Processor Qutput
- list from CG ~ FOP processor - optimized list
- user supplied routines of instructions

in assembly

code

Figure 4.12 FOP HIPO Chart

however, are nearly machine independent, and others fall into general classes,
so that a framework for FOP can be provided, which must then be tailored
by hand for a given machine. In general, the structure of FOP is similar

to the final pass of the BLISS11 compiler.

The first sub-phase of FOP performs optimizations which involve multiple
(and possibly widely separated) instructions. These include cross-jumping
s;ore/load pairs, etc. Since, in some cases, these optimizations can make
other improvements possible, this phase will be repeated until no optimiza-
tions remain to be performed. The second sub-phase will examine each in-

struction once, trying to replace it with a cheaper but equivalent

instructiouns.

The third sub-phase of FOP generates the final compiler output. For
machines, such as the PDP-11, with "span-dependent instructions' such as
long vs. short form jumps, the proper alternate form will be selected herc.
T. G. Szymanski's algorithm, which is efficient and optimal 'Szy78 1 will be

used to minimize the length of these instructions.
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.4 The MOP Computer Description

The MOP is a functional machine description in terms of input-output
assertions. That is, it maps inputs in the form of tree templates into
outputs which are all machine instructions (in assembly or machine code).
The description itself is in LISP list notation in which the tree templates

may be easily encoded. For instance the notation:
(; (« $1 (- 81 1)) (+ ZN (LSS (- $1 1) 0)) (« %z (EQL (-~ $1 1) O)»

is a linearization of the tree:

| _
*/ \ 7
KON A '

$1 - % LSS
AVDAN
\

51 1 /
$1 1 $1 1

Figure 4.13 LISP notation

The semicolon operator indicates a series of alternatives; in this case,
either of the three patterns, if matched, will output the same code. The
leftmost sub tree indicates the direct action of a decrement instruction (in
which the parameter "$1" must match a register), while the other two indi-
cate the settings of condition codes 7N and %Z by the decrement action.

Note that each pair of subtrees represents the side effects of applications
of the third.

The MOP is a set of six tables which describe different aspects of the

machine:




Storage Bases (SB) - a list of memory components in the machine, their
sizes and uses;

Instruction fields (I-flds) - a list of fields used within instructions,
their sizes, displacements, and types;

Access Modes (AM) - a list of ways in which the various storage bases
may be accessed (e.g., direct, indexed, etc) in symbolic form;

Operand Classes (OC) - a list of sets of access modes, any one of
which may be applicable to a given instruction field, and the cost
and format data for the use of each;

Instruction Formats (I-Fmt) - a list of possible formats which an in-
struction may be written in;

Machine Operations (M-op) - the instruction I/0 assertions, including

cost and format data for the use of each.

There is also a quasi-machine independent table used with the MOP de-
scription, called the Axiom List. This is a table of transformation func-
tions which allow a machine with a less-than-comprehensive instruction set
to use alternatives. For example, the axiom list includes DeMorgan's laws,

definitions of AND and OR operations in terms of each other, etc.

A set of examples taken from a description of the PDP8 computer in
Cattell (Cat78] will be presented. The complete description and the Axiom

List is contained in Appendix C.

- An entry in the I-Flds list:
(OP 0 3 0 0)
describes the field called "OP", which occurs at bit 0 word 0 of

the instruction, 3 bits long, of type "opcode',

- An entry in the SB list:
(Mp 256 12 M)
indicates the Mp (primary memory) is 256 12 bit words of type
“memory".
Another example is the program counter:

(PC 1 8 P)
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- An Access Mode:
TMp: (- Mp $1:#8 0 12)
indicates that the AM "%ZMp" is a direct fetch from Mp of 12 birts
from a constant 8 bit location supplied bv the tree.
- The Operand Class "Y' is defined by:
Y: (%8 :: (EMIT !5 0 07 $1 0)
ZMp i (EMIT '5 1 07 $1 1))

That is, wherever the OC "Y" occurs in a M-op, it can be matched
either bv a tree leaf representing an eight bit constant (AM is %8)
or by a direct memorv access (AM is 7Mp). Associated with each
is a format number (5) and space/time cost "0 0" and "l N" respec-
tively - note that use of direct access rather than immediate
costs one extra word). The final two items for each are formatting
templates.
- An example M-op:
(IF (LSS %Acc 0) (« ZPC (+ ZPC 1)))
(EMIT SKPL 3 1 1° 7 1 4)

This M-op could be called by matching it to the program subtree:

IF
/\
LSS «
%Acc 0 %PC +
/ \
ZPC 1

Figure 4.14 M-op Matching

If this were to happen, a SKPL instruction would be emitted, at a space
cost of 1 and time cost of 1, using I—Fmt.number 3. The "7 1 4" are the
contents of 3 of the fields in the instruction, fixed bv the selection of
this particular operation. Note that the SKPL is actuallyv superfluous; the
op code is emitted directly into the I-Fld. If input is to go into an

assembler, the alphabetic op may be required.
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e tinal section ot machine description data must be added to the
MOPL We need deseriptions of the data objects nsed by othe machine ' Cat76 .,
For example, suppose M-ops are supplied for both flnnfing point and integer
arithmetic operations. If this is so, then we also need a method to convert
tloating point and integer languave objects into the appropriate bit strings

and vice versa,
here dare twe approdaches.  We could paramctize all the conceivable
Gata tvpes and use a peneral purposce cenversion routine, or we could require
Sorovr o ided conversion routine:..
Soeowidd take bomiddle patt bor some comron data tvpes (Fixed point,

fony and snort Slostane pornt, <trines) we will provide parameterization:

or ot RS SR R R T othe cormer which o don't o tit the parameters)
the trpemenrtor Wi e recrired to srovide conversions,. Note that opera-
Tlopes o Pl Cqt g U e e b d threnes the Msopa
PR Phe  Too IToter=cdrote amnaye

oy S R N G tard by o rerated intermediate languages, in

o bansiave i= taitored toroa particular source language.

which each

Thus, TCOI Ta ot orcd tor the Ada Vamnrnaa

A TCOL revresent ation i» an abstract svntax tree in which internal
nodes are operators ard the externs! voden are crembols or constants. T
}

mav be expressed dn o tree netation, a- we have hoen Jdoine in this report, or

it mav be expressod o inoa Viscar cores by DISP onotat ion.

Ty practice 100l Potrtes the o ctance ot o svethol table to Jetinde

the svmbols dn e tree and their attribute-, Foothese are tater added the
temmorary names et ine gt ot tree node
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Operator Meanirg #fopds Value

H sequence * none
dereference 1 value
« assignment 2 none
+,-,% binary 2 value
arithmetic
- unary 1 value
arithmetic
CALL procedure 1+ * none
FCALL function 1 + #* value
call
UPLOOP increment 4 none
DOWNLOOP decrement 4 none
CASE case 2 + % none
construct
SEL case 2 none

alternative

* - () or more

Figure 4.15 Sample TCOL

Example

(; S1 32 .o Sn) perform state-

ments S, through Sn +N sequence

1
(. A) contents of location A .

( A (. B)) is A = B (Fortran)
(+ (. A) (. B)) is A+ B

(- (. A) is -A

(CALL X A B) is CALL X (A, B)
(same as CALL)

(UPLOOP T J K S) is FOR T : =
J TO K S; (Pascal)

(DOWNLOOP I J K S) is FOR I
= J DOWNTO K S;

(CASE I S1 52 . Sn) is
CASE 1 OF (SEL )

(SEL V S) is (CASE I S1 82
S)YV:s
n

Operators

Ada
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5. CONCLUSTONS
The theory and practice of compiler development has come a long way
since the first FORTRAN compilers. The theory of lexical and syntatic an-
alysis have been advanced, and the production of those portions of the com-
piler have been automated. We believe that we may now also automate the
processes of machine independent optimization, register allocation, and
code generation. Another area, machine dependent optimization, mav be at
least partially automated, but many of these optimizations are still too
machine-eccentricity dependent to allow a program to be able to predict
what to implement and how to go about it. (It is also hard for human com-

piler implementors, and very subject to experience on a particular machine.)

Semantics analysis is the other compiler process which does not vet
appear amenable to strictly automatic analysis and generation. In this
case, however,'the theory is advancing and the ability to completely specify
language semantics, and therefore the ability to generate the appropriate

output from such a speci ‘cation, seems to be a near future possibilit:.

We conclude that it is possible at this time to build a comprehensive
compiler generator which could, given a language specification and a machine
description, generate a compiler for the language on the machine. At this
time, it would pe necessary to hand code the semantics analvsis and at
least part of the final optimization pass, as well as some parts of a run-
time library. We foresee no intractable problems generating an Ada or

J73/1 compiler using this generator.

There are many areas which still require study in this field. Besides
continuing work to automate the semantics analysis and final optimization

passes, the following are topics on which further research probably will

yield good results:
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The packing algorithm used in TNB is not optimal, but rather
heuristic. A lot of pure topological research is going on to

solve the '"graph coloring" problem, of which this is an example.

Run-time monitoring [ Knu73!, in which the run-time system deter-
mines what parts of the program execute the most frequently, should
be examined, both as a feedback compiler-writer's aid, and to

drive.

Run-time optimizations, wherein the run-time statistics drive
optimization in an effort to increase the in-core efficiency of a
program which will be used repeatedly. One really exciting vari-
ation on this theme involves the optimization of micro-code sup-
porting the application to be optimized, following run-time
analysis of the application. The microcode could be tailored for

a particular application in this manner.

The inclusion of specific machine features, such as paging, cache
memory, hardware stacks and queues, etc., whose impact on opti-

mization strategies is not yet well understood.

Procedure integration and identification, which attempts to
optimize across a specific space/time tradeoff by isolating redun-
dant code sections into procedures, and the converse of expanding

procedures in-line.

Machine independent post optimization in which a MOP or similar
description is used to drive a general optimizer. [Fra79] describes
a general optimization which does most of the work of FLO, this

and similar techniques should be examined.
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6. A DETAILED COMPi.ATION EXAMPLE

I3

We will, in this section, attempt to pursue a nontrivial example
through the various stages of processing within a retargeted compiler. The
example is written in PASCAL and is not meant to be a functionallv meaning-
ful program (see Figure 6.1). After the front-end pass, it has been expanded
into an equivalent TCOL tree with accompanyiag symbolic information (see

Figure 6.2).

There are several things to notice in this front-end conversion. The
tree is of course built by the TRL routines under the direction of the user
supplied SEM phase. Note that the array accesses have been expanded, by
making assumptions covering both the language interpretation of arravs and
the machine. The symbol table has been consulted, in order to find the value

of the lowest array bound of each array.

The semantic routines could have as easily prepared a call to a gen-
eral array referencing subroutine, if the language (for example) allows

dynamic arrays.

The symbol table (Figure 6.3) initiallv contains variable tvpes and

bounds (for arrays) and values for constants.

When FLO is called, several things happen. Constant folding is called,
flow analysis identifies constants and dead variables, and the tree is threa-
ded with common subexpressions. These changes are shown in Figures 6.4 and

6.5.

Figure 6.4 is unchanged from 6.2, except for the addition of common
subexpression chains. These chains will be used by ORD in eliminating re-
dundant computations. Figure 6.5 shows the possibilities for constant fold-
ing, constant propagation, code motion and strength reduction. The "+0"

terms will be removed when they are recognized, and the constant selector
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VAR: A: ARRAY [0..10] OF INTEGER;
B: ARRAY ({0..15] OF INTEGER;
C, F, D: INTEGER;
Q, R, K, N, LCOUNT, MTYPE, E, WL: INTEGER;
CONST: MTYPE = 360;
BEGIN
LCOUNT: = 5; R := 03 C := 0; D := 0; F := 0; E := 03 ;
READ (Q,N); ]
FOR K := N DOWNTO O
BEGIN
R := R
cC :=¢C
F :=F
FOR 1
BEGIN
D:=D+ 1+ C;
E := E + LCOUNT;
END !
D :=D * C; %
END !

A [2 %K) ; i
A [3*K+ 1] +2+N* ABS (Q); :
B [3 *K]J;
0 TO K

+ + +

CASE MTYPE OF
360: WL := 323 §
1130: WL := 16; 1
6000: WL := 60; ?

END

WRITE ('WORDLENGTH IS', WL)

i}

1

Figure 6.1 Example Code Fragment
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-
Bounds
Name Type Low  High Value
K INT
N INT
B INT ARRAY 0 15
A INT ARRAY 0 10
C INT
F INT
I INT
D INT
E INT
LCOUNT INT
MTYPE INT CONST 360
WL INT
R INT

Figure 6.3 1Initial Symbol Table

for the "CASE" expression will cause it to be collapsed to (+ WL 32). Since
this is the only assignment to WL, all occurrences of WL will be replaced by
a constant 32 and this assignment will be eliminated. It is recognized that
"2 + N * ABS(Q)" is invariant with respect to the loop it appears in, and

its possible motion out of the loop is passed to ORD. Finally, "2 * K" and

"3 * K" are recognized as candidates for strength reduction.

Figure 6.6 shows the program tree after ORD has determined and per-
formed feasible optimizations. The expressions "2 * K" and "3 * K" in the
outer loop have been replaced by subtractions, with Tl and T2 being initialized

outside the loop, and the expression A + 1 has been replaced by a constant

with the value of A + 1 (note that "A" is a location constant). T3 is set to

the value of the loop-invariate expression outside the loop.
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ORD must finally try to set some attributes in such a way that optimal

use is madé of the machine's addressing hardware. If we allow the following

| ' |

access modes:

direct: indirect: i indexed: l (subcase: j )
| | VN |
M ' '\ X
M X
immediate: L

where C is a constant, M is a memory address constant (possibly relocatable)
and X is an index register constant. Access Mode determination will search
the tree for such patterns and apply attributes (and possibly perform some
rearranging) in order to save instructions.. The result is that Tl and T2

are bound to index registers, as also shown in Figure 6.7.

For this example we will define the following properties for the

integer instructions:

add: r < r+ x

sub: r+r - Xx

mul: r+r *x
P o

div: r+~r / x
o p

where r is any register, x is any register or memory location, rp is an even-
odd register pair, and r is the odd register of that pair. 1In order to

effect proper register preferencing, we will use two attributes to each node

of the tree:

preference/Prefx : = odd/0, even/E, pair/P,
don't care/D, memorv/M

result/Resx : = 0,F,P,M, anv register/R,

register 2/2

55

[yp——




At any given node, then, tlie attributes of result will be passed up the tree,
while preferences for the operands will be passed down, while the attempt
will be made to match the result attribute to the requested preference. We
can then formulate the computations on the attributes as a function of the
op code:

* PrefL* PrefR+ o, ResU « P

/s PrefL+ P, PrefR+ D, Resu« 0

These two are relatively straightforward , since the requirements are strict.
Multiply requires at least one of its operands in an odd register, and re-
turns a pair; the dividend must be in a pair, the divisor may be anvwhere,

and the result will be in an odd register.

: f
PrefL+ Prer’ Pre R+ D

ResU « IF ResL = M THEN Prer ELSE

(IF Res, = P THEN O ELSE ResL)

L
+ PrefL+ PrefR+ Prer

ResU+ IF Res Prer THEN ResLELSE

L

(IF ResR

(IF ResL¥ M THEN ResL ELSE

(IF ResR# M THEN ResR ELSE

Prer THEN ResR ELSE

(IF Prer P THEN E ELSE

(IF Prefu# D THEN Pref ELSE chose arbitrarily )))))

U

The latter two productions for result attributes are more complicated

because the instructions are more flexible; they may leave results in many

different places, depending on where their operands are located.

Finally, we need to determine productions for some other operators: \
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< PrefR« D (no result)
PrefD* D, ResU« R
CALL : PrefR (for each R branch)« M
FCALL : PrefR+ M, Res”* 2

The last referring to the system conventions that FCALL leaves its value in
register 2 in all cases. When the attributes are distributed over the tree
(i.e., it is "decorated") the result is Figure 6.7. Note that there are
several disagreements; however, all but one result may be presented in a
compatible way to the preferences ~ the one non~compatibility results from
the result of the FCALL being in register , whereas an odd register was

desired. This incompatibility will be relieved during code generation.

Register allocation will now attempt to bind the various nodes to
machine locations. Figure 6.8 shows the tree at this point, decorated with

temporary names and with basic blocks delineated. The attribute analysis

made earlier determined that 08 must be R2 and that Q2, QA’ and 037
must be odd numbered registers. Furthermore, Q1ss on and Q26 must be index

registers.

The initial pass of register allocation now proceeds through the tree,
collecting lifetime data on all the variables and temporaries, and then the
later pass allocates on the hasis of that data. 1In our example the allocator
might find that it would be best to keep the loop indicies in registers. If
the machine had four registers (RO through R3), and Rl, R2, and R3 could be

index registers, then a possible allocation is shown in Figure 6.9. All of

the nodes remaining unmarked are internal to effective address computations.

Code generation makes the heaviest use of the machine description g
provided bv the user. We will suppose the lL-ops shown in Figure 6.10
have been provided. The MMM algorithm now proceeds to trv to match the

highest nodes on the tree to patterns in the LOP table. The CALL node is
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(« ¢1:
(+ §1:
(+ S$1:

(+ $l:
(+ $1
(+ $1:
(« §1
(~ §1
(+ §1:
(+ §1:
(CALL
(~ $1:

REG 0) (EMIT [CLR $1))
REG $2:REG)
REG $2:MA) (EMIT [LD $1, $21)
(« $1:MA $2:REG) (EMIT [STA $1, $21])

REG

:REG

REG

:REG
:REG

REG

(+
(+
(+
(-
(_
(*

$1:
:REG

$1

$1:
:REG

$1
$1
$1

REG

REG

:REG
:REG

(EMIT [MVR $1, $21)

1)) (EMIT [INC $11)

$2:#16)) (EMIT [ADI $1, S$217)
$2:MA)) (EMIT |ADD $1, $21)
1)} (EMIT [DCR $1))

$2:4#16)) (EMIT [ADI $1, - $21)
2)) (EMIT [SLA $11))

REGP (* $1:REGCO $2:MA)) (EMIT [MPY S$1, $21)
$1:NAME $2:LIST) (EMIT [JSR $1 ; $21)

REG2 (FCALL $1:NAME $2:LIST)) (EMIT [JSR $1 ; $21)
(UPLOOP $1:REG $2:MA $3:MA $4:TREE)

(EMIT [LDA $1, $2 ; GENLBL $5 ;
CPR $1, S$3 ; BGR $6 ; $4;
INC $1 ; BRU $5 ; GENLBL $61)

(DOWNLOOP $1:REG $2:MA $3:MA S$4:TREE)

(EMIT 1 LDA $1, $2 ; GENLBL $5 ;
CPR S1, $3 ; BLS $6 ; $4 ; DCR $1 ;
BRU $5 ; GENLBL $61)

Figure 6.10 Example LOP Description
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matched immediately; the generated code is temporarily linked to the tree

for later collection and the algorithm proceeds to the assignment of 2 * N
Tl. This is a little harder, since no tree directly tatches the node (Tl is
a memory location). The search algorithm will match the SLA instruction and
then attempt to recurse on the rest, finding the STR instruction. Note that,
because of the ordering of the LOP, the SLA was generated instead of an MPY

instruction.

The algorithm will proceed through the rest of the tree in a similar
manner. Finally, the algorithm will walk the tree, building the doubly

linked list of instructions in correct order (Figure 6.11). ’

After code has been generated, FOP performs post optimization on the
code. Because of the simplicity of this example, cross-jumping, simplifi-
cation of operators, and span-dependent instruction optimization are not
performed. The single post optimization done is the elimination of the

redundant operation "LD R1l, T2", which is marked with an asterisk.




R2 # OPENING CODE FOR

R2, # UPLOOP
LD  Rl, N BGR L4

1 SLA Rl LD RO, D

ST  TI, Rl ADD RO, I

LD  Rl, N ADD RO, C

MPY Rl, THREE ST RO, D

ST T2, RI LD RO, E

JSR  ABS ADI RO, 5

QLIST ST RO, E

MVR  R3, R2 INC R2  # CLOSING CODE FOR
MPY R3, N BRU L3  # UPLOOP

ADI  R3, 2 L4: LD R1, D

ST  R3, T3 MPY  RI, C

LD R3, N  # OPENING CODE ST Rl, D

# FOR DOWNLOOP LD R1, TI

Ll: ADI  RI, - 2

CPR  R3, ZERO ST R1, TI1 i
BLS L2 LD Rl, T2
LD  RI, TI ADI R, - 3
LD  R2, R ST RL, T2
ADD  R2, A(R]) DCR  R3  # CLOSING CODE FOR
ADD RIl, C BRU L1  # DOWNLOOP

ST  R2, C L2: JSR  WRITE

*LD  RIl, T2 WLIST
. LD R2, F
ADD R2, B (Rl)
ST  R2, F

ZERO DATA O
THREE DATA 3

—

QLIST DATA
DATA
WLIST DATA

o O

DATA '---'

DATA 32
Figure 6.11 Code Generator Output

63




7. BIBLIOGRAPHY

This bibliograph is separated into sections ‘based on content.

Computer Description Languages

General and Survey Material

Bar75 Barbacci, M. R.: "A comparison of Register Transfer Languages

for Describing Computers and Digital Systems', IEEE Transactions

of Computers, 2412 (February 1975), ppl37-150.

SJ78 Smith, B. J. and Jordan, H. F.: '"Implications of Series-Parallel

Sequencing Rules', Computing 19 (1978) ppl89-201.

Jor Jordan, H. F.: '"Structural and Procedural Iteration in Hardware
Description Languages', Arbeitsberiche des IMMD, Band 9, Heft 8,
pp277-303 .

JS Jordan, Harry F. and Smith, Burton, J.: 'Structure of Digital

System Description Languages'.

Js77 Jordan, Harry F. and Smith, Burton, J.: 'The Assignment State-
ment in Hardware Description Languages', Computer, X, No. 6
(June 1977) pp43-49.

Su74 Su, Stephen Y. H. "A Survey of Computer Hardware Description

Languages in the U.S.A.", Computer, VII, No. 17 (Dec. 12), pp45-51.

ISP (and derivatives):

BN71 Bell, C. G. and Newell, A.: Computer Structures: Readings and
Examples, McGraw-Hill, 1971.

64




Sie74

Bar79

Dar68

PD67

LALSD:

SB75a

SB75b

BS71a

BS71b

Siewiorek, Dan: "Introducing ISP", Computer VII, No. 12 (Dec.
1974), pp39-41.

Barbacci, M. R.: Instruction Set Processor Specifications (ISPS):

The Notation and Applications, Dept. of Computer Science, Carnegie-

Mellon University (May 1979) CMU-CS-79-123.

Darringer, J. A." A Language for the Description of Digital

Computer Processors", Proceedings of the Design Automation Work-

shop, 1968,ppl5-1 to 15-8.

Parnas, D. L. and Darringer, J. A.: 'SODAS and a Methodology
for System Design', Proceedings of the 1967 Fall Joint Computing

Conference, pp449-474.,

Su, S. Y. H. and Baray, M. B.: '"Logic/Svstem Design Automation

Part I: LALSD - A Language for Automated Logic and Svstem Design'',

IEEE Computer Society Repository, 1975.

Su, S. Y. H. and Baray, M. B.: "LALSD - A Language for Automated

Logic and System Design' 1975 Int'l Svmposium on CHDL's and Their

Applications Proceedings, pp30-31 ACM, New York, 1975.

Baray, M. B. and Su, S. Y. H.: "A Digital System Modeling and

Design Language', Proceedings of ‘the 8th Annual Design Automation

Workshop 1971, ppl-22,

Baray, Mehmet B. and Su, Stephen Y. H.: "A Digital System Model-

ing Philosophy and Design Language" Proc. of Design Automation

Workshop SHARE - ACM - IEEE, June 1971, ppl-14,




SMITE:

TRW77

LCD:

IBM

AHPL:

HP73

Hil74

Hil75

Ive72

Iveb63

Fri6?

FY69

TRW Defense and Space Systems Grcup: SMITE Reference Manual,
(November 1977), RADC-TR-77-364. (A049038)

IBM: LCD - Language for Computer Design, Language Reference Manual.

Hill, F. J. and Peterson, G. R.: Digital Systems: Hardware }

Orgarization and Design, Wiley, New York, 1973.

Hill, Frederick F.: "Introducing AHPL" Computer, VII, No. 12
(Dec., 1974), pp28-30.

Hill, F. J.: '"Updating AHPL", 1975 Int'l Symposium on CHDL's

and Their Applications Proceedings, ACM, New York, 1975, pp22-29.

Iverson, K. E.: "A Common Language Hardware, Software and Appli-
cations', Proceedings of the 1972 Fall Joint Computing Conference,
ppl21-129

Iverson, K. E.: "Programming Notation in Systems Design' IBM

Systems Journal, (June 1963) ppll17-129.

Friedman, T. D.: "ALERT: A Program to Compile Designs from New
Computers', Digest lst Annual IEEE Computer Conference, (Sept. 1967)
ppl28-139.

Friedman, Theodore D., and Yank, Sih-Chin,: 'Methods Used in An

Automatic Logic Design Generator (ALERT)", TEEE Transactions on

Computers, C-18, No. 7,(July, 1969),pp593-606.
66




Chu74

DDL:

DD68

Cassandre:

BGL71

Hof

GHHT77

Chu, Yaohan: '"An ALGOL-like Computer Design Language', Communi-
cations of the ACM, VIII, No. 10 (Oct. 1965) pp607-615.

Chu, Yaohan: "Introducing CDL", Computer, VII, No. 12 (Dec.,
1974), pp31-33.

Duley, James R. and Dietmeyer, Donald L.: " Digital System Design
Language (DDL)", IEEE Transactions on Computers, Vol. C-17, No. 9
(Sept. 1968) pp850-861.

Dietmeyer, D. L.: 'Introducing DDL", Computer, VII No. 12 (Dec.,
1974), pp34-38.

Bogo, € .yot, Lux, Mermet, and Payan: '"CASSANDRE and the Computer
Aided Logical Systems Design', TA6, 26, Proceedings of IFIP Con-

gress, 1971.

Hof fman, R.: '"Experiences with the Language Cassandre".

Gordill, R., Handler, W., HeBlins, H., Klar, R., Spies, P. P.: /

FERES:A Nonprocedural Computer Hardware Design Language with Pre-

cise Description of Timing, Universitaten Bonn und Erlangen, Band

10, Nummer 15, Erlangen, November 1977.

67




GJK

LOGAL:

Ste77

MS75

LOTIS:

Sché4

Pi177

Pil75

ConLan:

RTS ITI:

Gardill, R., Jordan, H. F. and Klar, R.: " CHDL for Description

of Semisynchronous Networks'.

Stewart, J. H.: '"LOGAL: A CHDL for Logic Design and Synthesis
of Computers', Computer, X, No. 6 (June, 1977) ppl8-26.

Extended CDL:

Mowle, F. J. and Stine, L. R.: Reference Manual for Purdue Ex-

tended CDL Version 4.2, School of Electrical Engineering, Purdue

University, West Lafayette, Indiana, TR-EE 75-15, 1975.

Schlaeppi, H. P.: "A formal Language for Describing Machine
Logic, Timing, and Sequencing (LOTIS)", IEEE Transactions on

Electronic Computers EC-13 (August 1964), pp&439-448.

Piloty, Robert: Memo 3.20 Progress Report of the Working Group

of the Conference on Computer Hardware Description Languages, Con-

ference on Digital Hardware Languages, Universitv of Texas at

Austin, June, 1978.

Piloty, Robert: '"Segmentation Constructs for RTS 111, a Computer }
Hardware Description Language Based on CDL", Proceedings of the A

1975 International Symposium on Computer Hardware Description

Languages and their Applications, 1EEE Catalog #75CH1010-8C (1975)

ppll5-124.




2 S

Compilers and TWSs in General

ACH77 Allen, F. E., Carter, J. L., Harrison, W. H., et al.: '"The Ex-
perimental Compiling System Project', Research Report RC 6718
(#28922) IBM Thomas J. Watson Research Center, (Sept. 1977).

AU73 Aho, A. V., and Ullman, J. D.: The Theory of Parsing, Transla-

ting, and Compiling, Prentice-Hall, 1973.

AU77 Aho, A. V. and Ullman, J. D.: Principles of Compiler Design,
Addison-Wesley, 1977.

BHH77 Buckles, B. P., Hodges, B. C. and Hsia, P.: A Survev of Compiler

Development Aids, NASA-TM-X3490 (February 1977).

BW75 Bochmann, G. V. and Ward, P.: "Compiler Writing Svstem for At-
tribute Grammars", Department D'Informatique, Universite de

Montreal, (Julv 19795)

Cro72 Crowe, David: "Gencrating Parsers for Afix Grammars' Communica-

tions of the ACM, Th, 8, (Aug. 197.7)

Dun75 Dunhar, Terrv Lo "JOCIT JOVIAL Com, iler Implementation Tool',

Computer Scierces Corporation, RADU=TR=-7:-322 (Jan. 1975).(A005307)

FGCHB Feldman, 1, and Crics, Do "lransTator Writinge Svstems', Communi -
cations ol the ACM T, 0y (Foebe e,
1174 Intermetrics Inc.: "HAL “S-10 Comprler sveten Panctional Specifi-
. " Lt ‘ . i
cation ', TR #59-40 Clulv v/ a0y, |
.
Knub8 Knuth, D. F.: "Semantics ot Context - Froe languapes', Mathe-

matical Svstems Theory, U, 0, (1968%)

....................

(AN




Knu74

LCH79

LRS74

LS76

RFP

WIW75

Col74

CTW74

Fra79

Knuth, D. E.: "Structured Programming with GO TO Statements',

Computing Surveys 614 (December 1974), p. 268.

Leverett, Bruce W., Cattell, Roderic G. G., Hobbs, Steven O.,
et al.: "An Overview of the Production Quality Compiler-Compiler
Project", Computer Science Department, Carnegie~Mellon University,

(Feb. 1979), CMU-CS-79-105

Lewis, P. M., Rosencrantz, D. J. and Stearns, R. E.: '"Attributed.

Transformations", J. of Computer and Systems Sciences, 9, (1974).

Lancaster, Ronald L. and Scheider, Victor B.: 'Quick Compiler
Construction Using Uniform Code Generators', Software - P&E, 6

(1976) pp83-91.

Rome Air Development Center: Request for Proposal: Retargetable

Compiler, 1978.

Wulf, William, Johnsson, Richard K., Weinstock, Charles B., et al.:

"The Design of an Optimizing Compiler', American Elsevier, (1975).

Intermediate Languages

Coleman, Samuel S.: '"JANUS: A Universal Intermediate Language',
(PhD Thesis), University of Colorado, PB-232-923, (Mav 1974).

Coleman, S. S., Poole, P. C. and Waite, W. M.: '""The Mobile
Programming System, JANUS", Software - P&E, 4 (1974) pp5-23.

Frailey, Dennis J.: "An Intermediate Language for Source and
Target Independent Code Optimization', SIGPLAN Notices 14, 8,
(Aug. 1979) . Vs

70




MOS58

i Ric71

SLN79

WH78

CLI75

Fra79

Ges72

HS77

Haddon, B. K. and Waite, W. M.: "Experience with the Universal

Intermediate Programming Language JANUS", Software - P&E 8, 5

(September - October 1978), p. 601l.

Mock, 0., Olsztyn, V., Strong, J., Steel, T., Tritter, A, and -
Wegstein, J.: '"The Problem of Programming Communications with

Changing Machines: A Proposed Solution", Communication of the

ACM, 1, 12, (August 1958)

Richards, M.: '"The portability of the BCPL Compiler", Software
P&E, 1, 2 (1971) ppl35-146.

Schatz, B. R., Leverett, B. W., Newcomer, J. M., et al.: 'TCOL Ada
a

An Intermediate Representation for the DOD Standard Programming

Language', Report CMU-CS-79-42, Computer Science Department,

Carnegie-Mellcn University, (March 1979).

Waite, W. M. and Haddon, B. K.: '"The Universal Intermediate Lan-
guage JANUS (Draft Definition)', Report SEG-78-3, Department of
Electrical Engineering, University of Colorado, (Sept. 1978).

Optimizations

Computer Linguistics, Inc.: "A survey of Optimization Techniques

in Compilers', RADC Report, (Sept. 1975).
Fraser, C. W.: "A Compact, Machine-Independent Pecephole Optimizer'",
Sixth Annual ACM Symposium on Principles of Programming Languages,

(Jan. 1979), pp 1-6.

Geschke, C. M,: Global Program Optimization, Dept. of Computer

Science, Carnegie-Mellon University (October 1972), AFOSR-TR-73-1059.

Hunt, J. W. and Syzmanski, T. G.: "Gast Algorithm for Computing

Longest Common Subsequences', Communications of the ACM, 20, 5,

(May 1977).

"




LM69

McK65

Szv78

AJ76

AJ77

Amm77

Bea

Car?7

Lowry, Edward, S., and Medlock, C. W.: "Object Code Optimization",

Communications of the ACM, 12, 1 (Jan. 1969) p. 13.

McKeeman, W. M.: '"Peephole Optimization", Communications of the

ACM 8, 7, (July 1965).

Szvmanski, Thomas G : '"Assembling Code for Machines with Span-
Dependent Instructions', Communications of the ACM 21, 3 (April

1978).

Code Generation and Register Allocation

Aho, A. V. and Johnson, S. C.: "Optimal Code Generation for
Expression Trees', Journal of the ACM, 23, 3, (Julv 1976),

pp488-501.

Aho, A. V. and Johnson, S. C.: "Code Generation for Expressions
With Common Subexpressions', Journal of the ACM, 24, 1, (Januarv

1977) ppls6-160.

Ammann, Urs: ''On Code Generation in a PASCAL Compiler', Sott-

ware - P&F 7, (1977), pp391-423.

Beattv, J. C.: "Register Assignment Algorithm for Generation of

Highly Optimized Object Code", IBM J. Res. Develop., (Jan. 1973).

Bruno, John and Sethi, Ravi: '"Code Generation for a One-Register

Machine', Journal of the ACM, 23, 3, (Julv 1976) pp506-510.

Carter, J. Lawrence: "A Case Studv of a New Code Generation
Technique tor Compilers”, Communications of the ACM, 20,12, }

(December 1977) .




Cat?77 Cattell, R. G. G.: "A Survev and Critique of Some Models of

Code Generation", Carnegie-Mellon Universitv, Department of Com-

puter Science, (Nov. 1977).

Cat76 Cattell, R. G. G.: '"Describing Machine Data Types in a Machine
Description Language', Department of Computer Science, (August

1976).

Cat78 Cattell, R. G. G.: '"Formalization and Automatic Derivation of
Code Generators'", (PhD Thesis), Carnegie-Mellon University, De-

partment of Computer Science, (April 1978) CMU-CS-78-115.

CcG77 Crenshaw, J. W. and Griffin, D. R.: '"HOL Code Generator Develop-

ment Methodology', Computer Sciences Corporation, (Nov. 1977).

CHMT78 Chu, E., Halb, E., McCoy, H. and Morton, R.: "Automated Code
Generators for Compilers', RADC-TR-78-157, (Aug. 1978).(A059699)

DNF79 Donnegan, Michael, K., Noonan, Robert E., and Fevock, Stefan:

"A Code Generator Language', SIGPLAN Notices 14, 8, (Aug. 1979).

ER70 Elson, M. and Rake, S. T.: ''Code - Generation Technique for

Large-lLanguage Compilers', IBM Systems Journal 3, (1970).

Fra77 Fraser, Christopher W.: 'Automatic Generation of Code Generators',
(Thesis), University of Arizona, Department of Computer Science,

(July 1977).

Froih Freiburghouse, R. A.: '"Register Allocation Via Usage Counts',

Communications of the ACM 17, 11, (Nov. 1974).

R

i3 Clanville, Robert S.: "A Machine Independent Algorithm for Code

Generation and Its Use in Retargetable Compilers', (PhD Thesis),

iniversity of California, Berkelev, (Dec. 1973).




Joh75

New75

Noo79

0ak79

Sit79

Ter78

Wei?73

Johnsson, R. K.: An Approach to Global Register Allocation,

Dept. of Computer Science, Carnegie-Mellon University (December

1975) AFOSR-TR-76-0603.
Newcomer, Joseph M.: '"Machine-Independent Generation of Optimal
Local Code'" (PhD Thesis), Department of Computer Science, Carnegie-

Mellon University, (May 1975).

Noonan, Robert E.: 'The Design of Relatively Machine-Independent

Code Generators', NASA Contractor Report 159016, (Feb. 1979).

Oakley, John D.: Symbolic Execution of Formal Machine Descrip-

tions (PhD Thesis), Dept. of Computer Science, Carnegie-Mellon

University (April 1979), CMU-CS-79-117.

Sites, Richard L.: 'Machine-Independent Register Allocation',

SIGPLAN Notices 14, 8, (Aug. 1979).

Terman, Christopher J.: '"'The Specification of Code Gencration

Algorithms", (Thesis), MIT, (Jan. 1978).

Weingart, Steven W.: "An Efficient and Svstematic Method of

Compiler Code Generation', (PhD Thesis), Yale Universitv, (1973).




Appendix A:

A Comparative Study of Computer Descriptions

Languages

This report was completed under the auspices of the Martin Marietta

Independent Rescarch and Development program.

Report # R79 - 48659 - 001

o Niein IR Y




l,

2,

b,

T

Contents
Introduction
Procedural Langusges
1. Purpose, Description, and Leve)
2. Uata, Carriers, and Assianments

3. Modulasrization, Contro! Constructs, Relationship
Control and Cata, and Treatment of Time

4, Genrnerality, Kkeadability, and writability

Se Summary

Non=Pprocedural Lanquages
{1, Purpose, Description Tvpe, ard Description (eve)
e Data, Carriers, and Assignments

I, Modularizaticon, Control Consteructa, RNelationship
Contro! and Nats, anc Treatment ot Time

4, Generality, Reacability, and Wwritahility

S. Summary

Exclusions
Interestina Fut Incomplete Languagnms
1. ContLan

2., RIS III

Conclusions, Kemarks

Yerles ¢ Summary of Lanounaes ang Cheracteristics

ot

ot




Introduction

This paper briefly describes a number of computer descripe
tion Jlanguages (CDL's)., Rather than give & separate description
of each lanquage, the discussion focuses on groups of charace
teristics, The Yanguaqes are described and compared in terms of
each group, This should serve to make the presentation easfer to
comprehend and allow the reader to select thoge aspects of CDL's
of most interest to him, Section 2 presents the procedural
langueges, while Section 3 presents the non=procedural languages,
Each longuaoo group {s summarized separately,

Recause of the large numher of existing CDL's, this paper
does not try to be exhaustive, though an effort was made to in=
clude languages with wide applicability, Section & gives some of
the leanguages that were left out and some justification for doing
so., Section S discusses two languaqes, ConLan and RTS III, that
look promising and srbitious, but which are still beina defined,
Section 6 gives some conclusions and summary remarks, Section 7

summarizes the languages in & table for ecasy reference and come

parison,

Tt T Ao g 4




Prececgural Languages

The Aistinquishing feature of a procedural language is that

1t attributes a significance to the lexical order of the action
statements, Generally, the action statements are uroupead into
"steps” (or "time blocks"). The statements within a given group
are assumed to operate in parallel, The qarouns are performed in
order as they are ligteag in the text, Genarally, different ge=
quences of aroups can aperate in parallel, [his series=carallel
sequencing stpructure can generally be nestea to any “enth, Some
lanquages have more generas) parallelism conmstructs,

The languaqges considerec hera are ISP (N71), APOL fLarns),

LALSD [SHT7Sal, SMITF (TRW77), anrmoc LCu (Iu4), The lanagyanes are

described ana compared on the basis of a few characteristica at a

time,

Purpose, DNescrintion Tyre and Level of Nescrintion

Cedcvene Cwtmeccenes smere san FeEeE e eressncenes

First, the lanquages are compared on the basis of onurpnse,
description tvpe, anoc level of description,

Purpose here refers to the arplyications a larquace 118 tare=
yeteg tor, A lanauage desianer may focus on aoals for a lanquane
that are not directly related to the tarmnet aeglijcatimrns (reada=
bility, writaoility, carefu) treatement nf tine, powerfyl compo=
sition constructs, extensicility, etc,). Many nf the areas ade-

dreagsed by these goals are discussed later, Cthers are too sute

A-3
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jective tor svstematic evaluation ano comparison., Thus, someone

interested {n a comprehensive treatment of the objectives of a
lanquage {8 best advised to refer to the language defining docu~
ment,

Nescriction tyoe refers to the general sspects of the ways &
lanouage can be used to descripve s dicits! system, First, a des~
cription may emphasize the behavior of & system (the actions pere
formed ©ov the system) ar its structure (the corponents and their
relationgshiprs), while rursuing either of these orfentations or
some combination, & descrintion may Qive a3 specification, treat~
ing the syster as a "black box" and gQiving only its [/0 behavior,
Alternatively, a descriotion may qive an imnlementation, minutely
detailing the hehavior and/or structure of the svstam, It should
be noted that a lanauage can allow, or {nsist on, redundancy in
the form of alternative descriptions for a system or subsystem,
The alternatives mav have different orientatinns and/or different
degrees of detail, This redundancy may he exnloited throuqh
human or mschine consistency checking, To summerize, Jdescription
tvpe incluaes the orientation (structure vs, bhehavior), level of
detai! (specitication tc i{mplemtaticn), amna redundancy possible
with a languace,

The leve! of & description refpfs to the level of orimitives
used in writing the description, The level may te component cire
cuit, switching cirecuit, reqister tranafer, 15, or PM§, The
corponment circuit level deals with diodea, transistors, resis=
ters, etc,, and their interconnections, The switehinag circuit
level deals with logic cetes and flipetlops, kegister transter

priritives include registers, corhingtorial expressions ang dise

A=
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crete data end control operation steps. The ISF (instruction set
processor) pPrimitives sre interpretation rules, the memories vi=
sible to the programmer and instructinns (in terms of visible
memories), The PMS level describes the aqross comoonents of a
system (Processors, Memories, Switches, devices, ete,) giving
their general capabilities and their interrelationships, The
reader should be careful to distinguish level of descriptiton
from level of detasil, The two do correlate weakly, but the
latter 18 concerned with the kinds of primitives svaflable for
writing a description, while the former is concerned with how de=
tefled a description is, For a more through agiscussion of des~=

cription levels, the reader should see (BN71}] enc (Bar?S],

18f

The langueage ISP was developed for expogition,
Particulariy, its initisl purpose was tn concisely describe the
instruction sets for varicus diverse computers, [t {8 oriented
toward describina behavior with some aspects of the structure
being implied, ISP is useful on all Jeveis of detail, from
top=leve! specification to a detailea discription of an implemens
tation, ISP does not altlow for redundancy, ISP in mainly s re=
gister transfer language, thougoh it can be used at the ISP level

of description,




APOL

APDL was designed for design, simuletion, and documentation,
It is oriented toward behaviora) descriptions, The descrintions
are close to being 8 specification, APDL oprovides register
transfer level primitives, Redundant descriptions are not ale

lowed,

LALSD

LALSD was intended fcr use in documentation, simulation, and
design, It is oriented toward describinq the structure of & sys=
tem, The description may be at any level of detail from specifie
cation to implementation., At any Yevel of deteil above implemen=
tation, a high=order languege may be used to describe the behavi=
or of some parts of a8 system, Redundant descriptions are not gsl=

lowed., LALSD's primitives are on the regfster transfer level,

SMITE

SMITE was developed for use in developing emulstors to run
on a QMe], SMITE is oriented towsrd behavioral diescriptions,
It cen be used for specifications throuah implementation descripe
tions, No redundancy is allowed, SMITE's primitives are on the

register transfer level,




LCo

LCD is intended for use with comouter design, It is orient=
ed toward behaviorsl cescriptions, It ig not suited to writing
high level specificatiors, but {t can suprress some aetail,
though the lasnaueage (s mainly aporopriate to gescribina specific
implementations, Redundancy 38 required, Fach module must have
ot least a general description of hehavinr, tach module, except
one on the lowest level, rust also have a cgescription of the qata
objects and control seauences which implement its heahavinr, LCD
is mainly a register transfer level lanauage, tut can be used as

an ISP level language,

Date, Carriors, anc Assignments

ceere ccevevess wme seccscesce

Now the languaaces are compared on the basis of the data fa-~
cttities, carriers and assignments thevy provice, Datas supmorted
for compilation and in the described machine are distincuished,
Carriers are the elements of a system that hold snd transmit
data, They may simply he terminals (wires or connection points)
which retsin a given value only so lono as that value is applied
to them, Busses, which might be consigered a variety of termi=
nsl, sometimes recieve srecial support from larpusges. This and
the fact that they are so widely useug merit busses beino sinnled
out as @ coerrier type when » languaue supports them, Finpglly, a

carrier may be a recister, an element that retsins a value over

time without an input being escplied,




Assignments may serve several purposes {n a computer dese
criotion, They may represent setting some recister or aspplying

an fnout to a termingl, Assignments may set the value of

compile=time bpookkeeping varigbles, Asgsignment may be used to

represent multiplexing or pulsing, Finally, assianment may re=
present renaming of some structure, Eoaoch one of these functions
may have a separate symbol, For 8 thorough discussion of the as~

signment steatement, see (JS77]).

ISP supports bits ana intecers as date both during compila=
tfon and in the described machine, Both constants snd variables
are supported, Vvectors and matrices of bits are supported, A
vector of bits or 8 row of @& matrix may be used as an integer,
Date format description tcols have never been defimred for ISP,
Indexing end renaming are supported for accessing, An index ex=
pression may speci{fy a range or list of indexes. Any date object
may appear {n an index expression, Any dstas object, indexed or
not, or collection of ther, may be afven a name, The renaming
may a8lso be used to view the otbject or collection as an array or
matrix with index ranges of its Oown. Thus, names may be given to
subreqisters and collections of recisters, ISP primitive opers=

tions include the naormal arithmetic operators, logical AND, OR,

exclusive 0NR, equivalence and NOT, The orimitive operators also.

include all the relational operators and a rich set of shift op-
erators, Expressions may be arbitrarily comolex, The only care
riers ISP supports are recisters, Renaming end transfer assign=
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ments are supported,

APDL

APDL provides binary, octal, and decimal data oblects, Also'

supported are switches, data objects takimg on statement lahels
as values, The numeric objects may be composed into vectnrs and
matrices, Matrix rows anc vectors may be treated as positive ine
tegers, No description of abstrect formats is possible, The ine
dexing and renaming cacabilities oare analogous to ISF, execot
that an index for referencing a row 0f a matrix may only specify
a single row,

The boolean operators, AND, OR, NOT, and exclusfve 0K, are
provided., They treat 0 as truye and 1 3s false, The standard are
ithmetic operators are prcvided for integers, anrd all the stan=
dard relationsl operators are provided, Darringer's article
{Dar68) does not specify any expression composition, but does
seem to allow their irclysion in a languaqge implamentation,
Registers are the only carriers supported, and transfer is the

only assiaonment supported,

LALSO

The only data type supported by LALSD is bits. Witg may he
composed into vectors, Collections of objects and vectors can bhe
renamed as vectors, Gtxplicit address registers must bhe given for
"memories®, arrays of multi=bit registers, Incdexing of memorias

must use this address reqister, Primitive nperations include ine
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crement, decrement, shift, complement and concatanatiof for vec-=
tors, treatino vectors as integers when apnropriate, AND, OR,
NOT and exclusive (R are provided for bits, The full range of
relational operators are available which trest vectors as in=
tegers, Conditions may be arbitrarily comolex combinations of

bit and relational operations,

Reqgisters and terminals are supported as carriers,
Assignments can be used for connection, Transfer is represented

with a command that looks like a proceedure call,

b

[P

SMITE

SMITE provides bits as & primitive cdata tyoe, They can bhe
composed {into vectors and matrices, Formats may be described,
They aive names to subworcs of abstract structyres, These named
subwords cén then be used to reference subworos of concrete ob-
jects, Also, specific sections of specific ohjects can be given
uniaue names, Any value can be used as an index, Primitive op=

erations include addition, subtraction, a full complement of re=

lational operators, AND, OR, NOT, exciusive OR, and concstena~
tion, These operations, together with assianment, may be com=
posed arbitrarily into excressions, so long as each subexpression
returns a single value, Agsignment returns the value assigned,
Orerations are evalugtec from richt to left normally, bhut pare-
entheses may be used to overide the usual interpretstion,

Only register type carriers are supportecd, and transfer is

the only asssignment supported,

A-10
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L,CO

LCD provides support tor bits, A bit may take on a value of
0, 1, or UNDEFINED, LCD also supports variables that take on
symbolic values, These variagbles may be testea for equality or
ineaquality only, This suprort is helpful! for simulation using
symbolic execution, Vectors and matrices of hits may be speci=-
fied, Concatenation, AND, OR, NOT, and the standard arithmetic
operators are provided, The arithmetic orerators treat vectors
and rows of matrices as intecers, AND reduction of vectors is
also provided, Symbolic manipulation of symobolic values is pro-
vided, Any expression may be used as an ingdex, txpressions may
be arbitrarily compiex,

Busses, registers, and terminals are supoorted ss carriers,
Assignment to a register is & transfer, Assianment to a terminal

‘maintains the assigned valus ir the taraet for a time step,

Modularization, Control and Its Relation to Datas, anrd Time

CrcsnenRrtstane weeewes Sww wee smmmeeme e wevew wew wome

This section deals with a set of characteristics of how a
lanquage describeg the decomposition of gtructures and the decom=
pogition and control of processes, These characteristics are:
1) the modularization concepts; 7)) the control constructs; 3)
the treatment of time; ard 4) the relationshic between control
and dcata,

It is useful to modularize & system ipn poth time and space,

Space modular{zation (s seen in the part tionina of a svstem into

memories, controls, ALU's, and busses, Time mocdularization s
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seen in the definition of instruction fetch cycles, interface
protocols, and instruction decode processes,

A lenguage must provide ways of describing the processes and
structure that make up a machine, For nontrival processes, me=
chanismg must be provided for making choices and specifying iter=
stion, Since compyvsrs make major use of psrallelism, a language
must he able to express parallelism and coordination of oparallel
processes, A descriotion of hardwvare gstructures must include
descriptions of their interconnections, Finaslly, languages must
also provide forms for excressing modularization,

Connection, senuencing, ifteration, decision, and modularizae~
tion are more concerned with the organization of the actions anc
components of g machine than with what the actions and components
actually are, Orpanizational forms and mechaniems are referec to
as control constructes, The kinds of control constructs provideo
by a language greatly asffect its power and ease of use, For ine
stanc~, & serigs of {f statements can be used to make a <choice
among several alternatives, but 8 CASE or DECODE statement for
the same decision §s much easier to write and clearer to under=
stanag, Macros canr be very useful, as {g the ablility to ecply
descision mechanisms to structure, The construc’'s then hecome
compi{le=time mechanisms, Iterotion‘can be & particulariy powers
ful ana clear way of describing a l.rgé regular structure, Then
there are structure and crocess control constructs, which can be
1ivided into seauencirq and syncheronfrzation constructs,
Seauenrcing constructs tnclude selection and FORK,

Svnchronization constrycts include JUIN ang signalewait,
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Time {8 of oarest importance to any computer gesign,
Lancuages pProvige various ways of measuring and describing time
ing.

A common characterigtic of the lancuages rescribed in this
paper {s that they provide for the separation of control and
dete, The cdeta are the memories and terminals ancd the control is
the processes, It is alsc imrortant tnat the contrel amd cata he
able to interact, It is convenient to save the contrel state as
dats, Control state <changes rmust soretimes be ased on dJatas,
Thus the rossible 1{interactions ot control 8ng data for a

|anguages are aiscusseqd,

Isp

18P provicdes for modularization in the form of subprrocecures
and parameterized structures, Thus, macros are providen,
Sequencinag {s series=paralliel in straight text, IF .« THEN, JEL SE

and DECODE are proviced for control flow selection, Recursion is
the only iteration construct available, SIGNAL=wAIT synchroniza-
tion is provided, Timimrg is virtually igrored in that ore can~~"
soecify the time reautrements of processes and the only syrc-r - -
izatien possible 18 throughr the series=pprallel senver- -
explicit synchronizatior through SIGNAL aro WAIT, Forr -

gats are kent serar:.e except that cortrol Hecisicns ~-a. .

or data therough IF,, . THEN,, ,ELSF,.. ana LECUDH crrs: -
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APDL

APDL provides process modularization through procedures and
functions, IF ., THEN, ,ELSE s supported as 8 sequencing cone
struct, So are GOTO and IF EVER, which is similer to the ON CONe=
DITION of PL/1, Another aid to decribing seauencing is the time
block, The statements inside & time block are executed in parale !
lel, The time blocks may not contain time blocks, Time require-=
ments for time blocks may be specified, The ocste type SwITCH *
from ALGOL (s availadle, and may hold an arrey of labels as va-

lues, It can then be ysea to fecilitate a8 sequence selection,

LALSD

Structursl moaulerization is supported by UNITs and FUNCe
TIONs, UNITs describe related structures and control processes,
while FUNCTIONs describe combinatoria) networks wused within o
UNIT, UNITs may be nestec, Statements in a UNIT mey use objects
defined in an outer unit through uyse of an fmport specification,
Sequencing constructs similar to IF,,THEN,,ELSE, CASE, and
FORK,.JOIN sre provided. Iteration on » condition can be speci=
fied, It s possible to uoif on & condition or have execution of
8 UNIT be dependent on the getting of some control variables,
Control and data are very strictly separated, though control de=
cisions may be based on data values, It {s possible to specify
one or more clocks, which may be indepencent or synchronized with

other clocks,

A-14




SMITE

SMITE provides for subproceduren through PRNCESSes,
IF..THEN,,ELSE and CASE are provided for seaquence selection,
Iteration on & condition and for 8 count are nrovided, A 00 FQe
REVER construet is provided, and @ loop ESCAPE, PARALLEL=RFGIN
and PARALLEL-END are provided to suppert serieseparsllel seauence
inge. The time requirement for any simple or conposite oreration
may be specified, Control snd dete are corefully separated, but

control decisions may be based on aasta values,

LCo

LCD supports subprocedures, It has hlock structure scope
rules, IF.,THEN, ,ELSE {8 provided for seaquence selection and
WHILE {s provided for procedural {teration, One {implicit, dis=
crete clock is assumed, Relptive timings of events may be speci=
fied based on this clock, These ¢timinos can override lexical
order {n ‘npecifv§n9 sequence, Control and date sre kept serar=

ate, ?

Generality, Readability and writability

cosmanrersne cecccscsess see soeeseccsce
The languages sre now compared on the basis of their qgener=

slity, resdability and writability, These charecteristics are &

similer to those discussec by Barbecci ([(bar?5), The main noints }3

saffecting generality that are examinea are assumntions abhout the |

machines being descrihed, whether the lanauage can work on dijfe=
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ferent description levelsg, extensibility, existing applicat}ona
based on the languaae and machines described in the language, Of
these five points, it is hardest to pet good information on what
machines have been described in 8 language, The 1ists given for
described machines should not be taken as st all exhsustive, but
Just as miscellaneous information, The aspects of writability
and readability looked at are familiarity of lanquage struct ires
and operators, simplicity and fidelity possible between the

structu~e of a descriotiorn and the described machine,

ISP

ISP hes shown itself to be cepable of describing & wide vare~
fety of machines, Bell and Newell give numerous descriptions in
1SP (BN71), 1In addition, Carnegie=Mellon University has compiled
numerous descriptions §n ISPS, a varisnt of ISP, Among the des~
cribed machines are the IBM 360, 1BM 370, Merk ], PDP8, PLP1O,
and verious PDPli's, One reason for this aenerality s that [SP
meokes few assumptions shout machines, The main ones are that the
state of o mechine is embodied in its memories and that all! mo=
dule interfaces are reglized with registers, ISP {e°mainly suite
ed to the register transfer level of cescription, "It can come
close to the ISP leve), By restricting the operators and the
complextty of expressions, ISP cen be stretched to the switching
circuit level, ISP has explicitly allowed for extenstons through
allowing qualifiers orn al) its expressions, operators and cone
structs, These qualifiers can be used to put extrs finformation

into a description, The lengusge can also be extended by addaing
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new operators or new attributes for modJ\oo snd registers,
Furthermore, information required by special automated uses of an
ISP description may be put into comments, ISP descriptions have
been transleted into low level computer fabrication {nstructions
and parts lists, They have been the basis of sutomsted software
generation and simulations, ISP has also been used for classroom
design efforts,

ISP s highly readable and writable, since, after all, it
wes originally developed for exposition, Its structures end ope
erstors are largely based or ALGOL, One indication of its sime
plicity is the small size (6=8 pages) of its own BNF grammar Ange=
cription, It is therefore simple and familiar, 1Its general moe
dularization supcort asna support of vectors and matrices of bits
allow a description to closely follow the structure of the aese
cribpd machine, This fidelity {s also enhanced by the ability to
share rooourﬁel between modules end specify explicit synchronizee=

tion and series=parallel sequencing.

APDL

APOL makesg no explicit assumptions ebout the machines it
describes, It can be used on an ISP as well as & register
transfer leve)l, It is extensible through new operators, It has
been used for simuletion and to generate detailed hardware dea~-
criptions, No data has been found on what devices have been des-
cribed in APDL,

APDL closely resemhlas ALGOL ond has most of the simplicity
ond familierity of that lanquage, Its general modulesrization ca=

A-17

i
:
j




pability should allow close fidelity between & description end

the described machine,

LALSD

In LALSD & aigital gystem congists of a collection of units
whose operation 1is controlled through explicit contro) signals,
Eech unit {n turn has the ability to generste sequences of con=
trol sionals to operate its subcomponents, The language cen only
work st the register transfer level, It {s extensible through
the addition of new operators, It has been uiod for simulation
and logic description generation,

LALSD s a rather complex languege reauiring a'l descrip=
tions to have e feirly complex structure, It would hsve a hard
time describing with much fidelity a machine that was not & sys~
tem of cooperating units, such as & machine implemented through
micro=programming, where the complexity lies in the stored con=
tro}l program more than in the.horduaro. While LALSD provides a
lot of femilier and useful facilities, it uses wunfamilisr con=
structs to support thenm, For instance, "/ condition /" means

“waft on condition®” end " [A) => 8" means SIF A THEN 8",

SMITE

' SMITE g only ugeful at & register trongfer leve! of des~
crintion, It makes no restrictive assumptions asbout the machines
it describes, It is extensibile through the sddition of operes-
tors, SMITE (s used for writing emulators for the OM=},
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The language is simple, and uses femiliar constructs, Its
modularization cepshilities should allow a description to closely

follow the stryucture of the deseribed machine,

LCo

LCD sssumes thet the operations in a described machine take
place 1{in discrete steps in time with a single system clock, It
is useful at the register transfer level only, It can he extende
ed through introducing new operators, LCD is being used for de-
sign and simylation,

The languege uses farmiliar constructs and allows for gaimple
descriptions except for the reauirement for redundsncy. The re=
dundancy may aid understardina of the description and automated
consistency checking, The modularization capabilities of the J
Yehguage should allow the structure of a description to closely l

follow the structure o0f the described machine,

Summary

It can be seen that there I8 a great desl of similarity

among the various procedural languages, especially {n the facilie
ties they provide. Puposes vary, but most are oriented toward
describing the behavior ocf a system at any level of detai!l using i
RT primitives, ODatas objects supported are similar among the 'g
languasges, with hits and {ntegers being provided slong with vece

tors and matrices of hits, Integers are assumed to be vectors of
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LS
bits, While enly SMITE provides for abstract fo;m.t specifice=
tions, most langueges allow the renaming of fields of specific
vectors for esse oOf access. Indexina is slweys supported, but
sometimes restricted to use with exnlicit asddress req!otor; or
simple expressions, Arithmetic, boolean, and relational opere~
tors are generally provided along with concetenation and shift
operators, All of these operators are available for uue-in arbi=

trarily complex expressions, Registers and terminals are usually

provided as datas carriers glong with tf.n.for and connection as=

sigments, Some concept similar to subprocedures and functions s
usuelly provided for modularization, though the form of the cone
trol constructs and their exact semantics do vary, Most of the
Yanguages. are rether easy to write and understand, since they all

(to some defree) are simple, use familiar conatructs, and provide

o fair degQree of ftidelity to the described herdware., Also, a'

wide variety of control constructs gre provided, However,
IFe e THEN,ELSE,,, or sorething analagous, is the only construce
always provided, Generality an& treatment of time vary widely
arong leanguages,

ISP, with its unique emphasis on exposition, 1{s the most
general of the procedural languages and is the most extensible,
as well, 1Its serieseparallel seaquencing and o{gnol-u.(t syne
chronization primitives are very high lTevel, lacking the ahil{ty
to precisely describe fine timings,

APDL fs unique {n being mainly concerned with soecification
of a system without attention to design detsils, In support of
this, APCL provides the wigest veriety of data types, ¢{ncluding
state encodings (called switches), which are not supported by any
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other procedural languages, In addition, APDL §s the only oroce=

duresl language to have a GOTO or an interrupt handling primitive
(IF EVER,eoe)e Its time block, which allow for some opargllelism
and timing specification, is unusual, also,

LALSD {s the only structurally oriented procedural languace
and is also, spprooriately, the only procedural lsnguace to feae-
ture 2 connection sssignment, LALSD is @ lower level Ilanguage
than the other procedural languages, as exemplified by fts reli=
ance on metronome=like clccks and the requirement for an explicit
sddress reaister, One interesting aspect of LALSD {s its use of
controlled scopes, Otherwise, however, it is less essy to use
than the other lenguages cue to its complexity and its use of une
famfiliar constructs,

SMITE s the only langusge designed for emylation,
Dtherwise it is distinquished by its wide veriety of useful and
;amiliar econtrol constructs and its ability to rrecisely descrine
timing reauirements,

LCD is the only langLage to ollow for redundant descrioe

tions, It also allows for nrecise description of timing,
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Non=procedural Lanquages

The Yanguages described in this section are CDL ([Chué6S), DDL
(0D68), MOP (Cat78), Cassandre (BGL71), ERES ([GHH77), and AHPL
(HP73), (Hi17S), The organizetion of the discussion {n this
chapter will be similar to that of the esecond chapter,
Cheracteristics of the languages will be arouped in the same way
with the languages beinc compared on the basis of each groupo {n
turn, The definition of terms and discussion of issues will not
be repeated, The reader is left to Qo to the second chapter for

this material,

Purpose, Description Type, and Level of Description

coL

COL was developed for use with digital desian end gsimula=
tion, Descriptions {in CDL specify a very detailed implementa~
tion, These descriptions are orientec toward the behavior of a
system rather than fts structure, COL primitives sre on the re=

gister transfer level, Redundant descriptions are not allowed,

onL
DOL was developed for diaital desian, [t can be used for o

wide range of Jlevels of detail, The descriptions are oriented
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toward the behavior of a8 syatem, OUL primftives are at the re=
gister transfer level of description, Redundant descrintions are

not allowed.

MOP

MOP was intended for use with the automatic qeneration of
software, It is orientead toward the behavinr 0f machines and the
descriptions written n MUP are high level! specificatione,
Redundant descriptions are not allowed, MOP's primitives are

strictly on the ISP level of description,

Cassandre

Cassandre's purpose was to aid design and Adevelorement of
digital systems, Cassendre is oriented toward describing the be=
havior of a syster more than its structure, Descrintions in Case
sandre can be at anv level of cetail from a high level specifica=
tion to o-detailed implementation, Cassandgre primitives are at
the register transfer level of description, There is no ale

lowance for redundant cescriptions,

tRES

ERES was degigned for use in computer harcdware design, FERES
is oriented toward nanescriping the structure of a computer, ana
can be used for descripticns over a wide ranqge of levels of deta=
il. Redundant descriptions sre not allowed, ERES can he used st
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the register transfer or switching circuit level of descriotion,

ANPL

AHP| was developed for use in teaching design, Descriptions
in AAPL are noneredundant and are oriented toward the behavior of
a svstem, AMPL is appropriste for writing specifications and can
be used to describe a fairly detailed specification, The
language is mainly useful on the register transfer level of des=
cription, though it c¢an be used to do some description on the

switehing cireuit level,

Data, Carriars, and Assigrments

coL

COL supports bits ancd integers 1in the described machine,
Vectors of bits may Dve defined, Memories, arravs of register
vectors, mavy he defined with an explicit address reqgister for in=
dextina, Vectors of bits may be treated as integers, Register
subfields end collections of reqgisters may be given names for
ease of reference, Addition, subtraction, incrementation and dee
crementation are defined for integers, The logical onerstors
AND, OR, NOT, and EQUIVALENCE are oroviced, A full set of shift
and relationsl operators are provided, A concatenation operator
ts provided, In addtion, FETCH ana STORF are provided for memo=

ries, Since CDOL operations are supposed to be done in 8 single
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clock period, expressions must be kept simple,

Reqister and terminal carriers are provided, aloryg with sep=
arate transfar and conrection assianments, The connection ase
signment symbol can be useo to represent multiplexing »apr renam=
ing, A distinct exchange operator is provided for swapoing the

valyes stored in two registers,

bDoL

The only data type provided by ODL for the described machine
is bits, and integers are provided as compile=time bookkeeping
variables, Arrays of bits may be defimed with an arbitrary
number of dimensions and arbitrary index hounds, Index formation
rules are those of ISP (3ee Sec 2.,2,1), Subfields nf srrays and
collections of registers may be renamed as single arrays, The
logical ooerators AND, NAMN], NOR, eauivalence, OR, anad exclysive
or are provided., Additicn, subtraction and the usual relational
operators are provided aleng with concatenation, complementation,
selective compiementation, and reduction for vectors,
Arbitrarily complex expressions may be formed, KeQgister and tere
minal carriers sre nroyided, Connection, transfer, renamina, and

bookkeeping assignments are supportea,

MOP
MUP gssuymes that carriers in a mackine are cnmposed aof bits
and it surports any data type encoded in a vector of hits,

Vectors and matrices of bits are surporten and strong format
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spocification tools are providea, Rows of matrices may be see
lected through indexing ara fields of a row may be specified,
Any exoression, inclucing an i{ndexed value may be used as an
index, These accessing primitives may be used to define new ac=
cess modeg that can then be used by other parts of the descripe
tion, Norma) programming language data operators are easvailable
along with common machine lanquage operations, These operators
may be combined to form arbitrarily complex expressions, MOP

only allows for regigster carriers and transfer assignments,

Cassanare

Cassandre suprports integers and bits which may be composed
into vectors and matrices, Bookkeeping integers are also provide
ed, Constants and ranges of constants may he used as indexes,
The result of a decode cperator, whose operand is a bit vector,
may be used as an index when a data value needs to be usaed as an
index, The following operations are provided: AND, OR, equiva=
lence, exclusive or, reduction of a vector by these first four,
concatenation, necation and the previously mentioned decode onere
ator, Arbitrarily complex expregsions may he formed using these
operators, except the decode operator, If the decode operator i3
used in an expression, the expression musf involve only a direct
connection or transfer of the indexed vslue,

Reqgister and terminal carriers are provided, A  connection
" assignment {s provided for terminals and a distinct transfer as=
signment symbol is provided for transfers, Transfers must be

controllied by a clock signal, A bookkeepina sssignment {s oroe=
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vided for the bookxeeping integers,

ERES

ERES supnorts bits as its primitive dats tvpe, PRits can bhe
composed {into vectors ana matrices, [f variable expressions are
to be used as an index for a row of a8 matrix, an explicit adaress
register must be specified, Groups of arrevs and bits, subsets
of arrays, 8nd grouos of subsets may be renamed to facilitate
mulitiple views and paccessing methods for structures, AND, OR,
NOT, addition, end incrementation are provided as primitive opere
ations, as wel)l as others, Any vector may be intercreted as an
integer for arithmetic purposes, Arbitrarily complex expressions
may be formed,

Terminsls anc registers are supported as carriars, with cone
n;ction and transfer assignments being provided, Multioleaxinag is
asgumed if multiple connections are specified to the same termie

nal, Renasming is expressed with an assignment statement,

AHPL

AHPL provides for operations on bits and inteqQers, The in=
teger operations operate on vectors of bits, Support is provided
for vectors and matrices of bits with the rows of the matrices
being accessed only throuah constant indices or an explicit tne
dexing operator, while columns may only be accessed throuqh cone=
stant indices, It shoula be noted that bookkeeping inteqers are
provided at compile time which may be used in place of constant
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indices, There are no format description tools provided, AHP(
provides the standard arithmetic, boolean, relational, and nhfft
operators, as well as absolute value, maximym, minimum, concate=
nation, decode, encode, reduce and compress ooerators, A funce
tion, syn, 1is crovided for detecting signals from asynchronous
systems, It is true if its argument, @ siqgnal, was recieved
since the last clock signal, Expressions not involving the in=

dexing operator resemble those of APL, The expressions may be=

come orpitrarily complex except that one would want to limit the

operators and the complexity of expressions for more detailed
descriptions, The {ndexing operator may only be used where the
index is held in a simple register (bit vector) and the indexed
value is directly connected or transfered to a terminal or regis=
ter, respectively,

AHPL provides a variety of carriers and assignments, The
carriers include inout terminals, output terminals, registers,
busses, ONE SHOTs, and bookkeepinq'vurioblos. Assignments can be
used to describe multiolexed or permanent connection to the tere
minals and busses, ONE SHOTs have some default value which will
change for some period after being set to the non=default valus,
The delay time (the amount of time the device maintains ‘he
non=default value) {s specified in the ONE SHOT's declaration,
Assignment {s used for the transfers to registers snd ONE SHOTs,

and for setting and changing the value of bookkeeping vartables,




Modularization, Control and Dsta, and Time

coL

In COL, one may perform some structural modularization
through defining combinstorial networks, Sequences of actions
may be defined, facilitating orocedurel modularization, BRoth of
these definitions are avajlable throughout the descriotion {n
which they eppear, A DO construct is provided to envoke prede=
fined action sequences ano an IF,,THEN,,ELSE {s provided for pro=
cedural selection (choosing between alternative actions),
Activation conditions are used to control actions, All the ace
tions associated with an sctivation condition are performed in
parallel when the condition is true, A single clock may be de=
clared and is required, It is usea to describe a machine's beha~
vior with respect to time, Control and data are separately ijden=~
tified with IF, , THEN,,ELSE and the activation conditions sllowing

control functions to be affected by data,

ooL

DOL provides for structural modularization through definfie
tion of combinatoriel networks and declaration of ELEMENTS, spee-
cial units with unspecifiea structure ond behavior, These spe-
cial wunits may be usec to sunpress getsil, Nbjects declarea
within & module are only sccessible within that module,

Boolear networks are declared with a B8O statement,

Combinatorial networks (relgted blocks of termingls and hoolean
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networks) may be declareg using OP statements, An EL statement
gefines the input end output ports of a corponent without define=
ing its behavoir or interral structure. The component {s availe
sble for use within the module where the component {s declared,
There are three lgvels of modules in s DDL description, The
top level, called a system, corresponds to the entire described

machine, The system {g diviced into asutomatons and the automae

tons are subdivided fnto segments, with geaments being optional,
Only the bottommost level may have action statements, Note that
this puts 8 Jow 1imit on the emount of nesting possible in a des~
cription,

Structural iteration is possible and is aided by o compile
time control variable, Procedural constructs analasgous to
IF .. THEN, ,ELSE and CASE ere provided for procedurasl selection, A
macro facility is providec by the ID gtatement, though parameters
sre not supoorted,

Sequencing ia controlled through states. 0Only one state of
en automaton may be active at any one time, The actions for a
given stete are performed in paralliel and listed together with o
tabel for the state, A condition may be specified for a state s0
. that if ean automaton reaches that atate, the actions for the

state will not ©be performed until the condition is setisfied,
State changes are explicit operstions, -Vho stete may be encoded
in & memory and the reafister specifvying the current stete may he
qiven a name, State chances betweer segments of an asutomaton
scecify a default return state within the cr'rrent seament, Thus,
among other things, an operation mgy treat a seament ss a subproe-

cedure by specifying the current stete as the return gtate, It
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{s possible to specify & conaition for any level module, The ace
tions of that module will be held up until the condition becomes
true, It is possible to specify a set of actions for an automa=
ton or segment, These operations will be performed fn esch state
of the automgton or segment, respectively,

Delays ana single or multiole clocks may be specified to
ellow odescription of the behavior of the gescribea cevice with

respect to time,

MoP

There is only one modularizetion concept in MOP in the sense
of grouping of functions or structures under a name, This cone~
cept {3 the Operand Cless, which defines a set of addressing
methods for easy reference, Since Operand Classes mav overlap,
they sre & kind of macro facility, However, the languaae does
provide for (force, really) a partitioning of the conceptualiza=
tion of a computer, The interpretation cvcle, memories, data
types, addressing modes, operand classes (discussed above), ine
struction fields, instruction formats and instruction hehavior
are easch treated seoarstely,

mUP sssumes an implicit interpretastion cycle which controls
which of the descrived instructions is oerformned at any given
time, Because of this and the fact that MOP decribes very hiagh
level behavior, the motivation for control contructs is low, The
mein control construct is analogous tn TF, THEN, ,ELSE and is used
in describing instruction actions,
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Rehavior with respect to time is described through specify=
ing a time cost for easch instruction, Control and dets are keot
separated except that decisions about actions, including orogram

counter modification, may be based on dats values,

Cassandre

Cassandre allows s system to be decomposed {nto wunits,
Units may be nested and may be connected arbitrarily, This al=-
lows the description of any system of interrelationships, One
can also define sequences of asctions that can be invoked from
ssveral places in a unit,

One may specify that multicle units within a given unit may
be active, Pulses may be transmitted between units for synchrone
fzation and communication, Clocks mey aleo be used for timing
and synchronization,

Fach asction statement is either lebeled with & state or (o
part of » labeled grour of .tatom;ntt. Only one state of a unit
fs active at any one time and transfers between states are expli=
cit, States may be encoded in registers, IF,,THEN,.,ELSE is pro=
videa for preocedura) selection, Structursl jteration is orovided

for parellel! execution,

ERES
FRES provides for definition of action secuences and Boolean
networks 88 aids for mocdulerfzation, Actions and groups of ac~ &

tions are controlled by asctiviation conditions, 1F ., . THEN, ELSE
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is provided for procedyral selection,

ERES allows specitication of the time required for simple
and composite actions, Al trana'ern' are dependgent on clock
pulises, In an extended version, multiple, noasibly asynchranous,
¢liocks may be specified arc primitives sre orovided for coordina=-

tion of asynchronous parts of the systam, The basfic version of

ERES allows for a single clock for the system,

AHPL

The modulerization constructs nrovioeg by AHPL sumport the
definition of undescribed components and cnmhinatorial networks,
These networks are Yow level modules involvina simple data opera=
tions end no iteration, though they can describe rather complex
patterns 0f connection, An AHPL statement consists of actions
together with brenches for deciding the state transistions, The
ections éon be sny mixture of connections and trenafers, which
sre assumed to operaste in parallel, The target of a trensfer can
be made dependent on deta and transfers can pe conaitional, Each
stetement {8 numbered eond corresponds to a state, and the
branches refer to the statement numbers, AHPL provides the APL
operators for branching and selection, They provide the normsal
capabilities, but special characters sre used to represent then
reather then key words, Structural iteration is provided, includ=
ing bookkeeping verfables, It is possible to specify that a nro=
cess wait or not wait for the completion of an initiated operae-
tion, Control and data are separately identified ann selection
is provided to sllow control decsions to deocena on data.
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DIVERGE and CONVERGE, which are similer to fork and join,

allow for the description of parallel processes, In.oddition.

ONE SHOTs, syn, and delays can 8ll! be used to describe timing,

Generality, Readability and writability

ceL

CDL's main assumptior asbout a device is that it has only one
clock, Desceriptions in COL are confined to a primitive register
tranafer level., COL con be extended through new operators,

Though comments are supported, CDL's lack of modularization
tools areatly restricts readability end writability, Since s
degcription is strictly iinesr, it cannot follow the structure of
the described machine, Also, because the of the global scope of
any identifier, large descriotions are going to start having
problems with name conflicts, especially if more than one person
is working on the same descrintion, It aslso becomes difficult
for 8 humen to spot cooperating parts of the machine and shared
fecilities, The language is gimple, however, and uses familieor

notations for stendard concepts,

ubL
DDOL maskes no substansive assumptions ahout devices being
descrived, Descriptions can be at the reaister transfer leve! or

switching circuit level, The language is extensible through new
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operators end predefined elements (undescrihed components),
1 NOL hes been used for design, documentation, simulation ano
logic design automation. It has been used to describe a variety
of machines designed for classroom exercises and research,

The lenguage is rather simple, using many familiar cone

structs, However, the oprocedural selection notations are none

standard and not suqggQestive, The limited depth of madularization

could hamper fidelity and resdability, Clusters of closely coo-

perating sutomatons are hard to represent and may be hard for the

reader to spot, Also, modules that sre subcomponents of other 1

modules may be very hard or {mpossihle to represent, agsin 1im{te=

ing fidelity, i’
[

MOP

MOP assumes a device hes memories embooying. the machine

state, instructions to change the state, a main memory tn hold

; the instructions, and an fnstruction interpretation cycle with a
; program counter, It is thus limited to deacribina machines which
perform one high level operation at a time {in reponse to stored
data, Thouah parasllel cperations may be used to imclement an ine

struction, they cannot be described with MOP, »0OP can be extende

ed tnhrough introduction of new constructs to describe the actions
of the instructions, MOP is limited to ISP level aescriptions,
It has been used to describe the PDPA and PPP11/20 for code aenw
erstor derivation purposes,

One {nteresting sspect of MOP is that a MQP description of a
computer may he derived, »ith little hyman inout, frorm a descrip=
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tion weritter in ISP, which §is helpful in light to the impediments

to wide applicability of MOP, This method has been used to gene

erate a MOP description of the PDP11/70,

Cassandre

Cassandre assumes that a computer consists a collection of
potentially nested sutorata, each of whose operation is con=
trolled by discrete states with state transitions occuring at
clock signals., Actions for a given state are performed in a sin=
gle clock period, DNescriptions are confined te the register
transfer level and extansibility is hard to assess from available
descriptions (the main lenguage definition is @& Ph,D,
dissertation written in French), Cassandre has been used to des~
cribe a l6=bit ALGOL machine and a system having two V{inked INTEL
8080's., Automated applications are envisioned which wil) reduce
Cesssndre cescriptions to lower level descriptions, estimate the
cost of units, analyze gescriptions, support description modifi=
cation, do reliability analysis, design cfrcufit test procedures,
produce grarhical representetions of a system, and sid the design

of microprogrammed machines,

ERES

ERES as currently defined sssumes synchronous systems that
are composed of synchronous sequential networks and combinatorial
retworks, A proposed extension {GJK) provides mechanisms for co=

operation between asynchronous perts of s system, The language
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can be ugsea on the reqQister transfer level or the switching cire=

cuit level, and is extensible through introduction o0f new opera=
tors, Information is not avalilable on what acplications have
been develoned using FRFS nor on the machines that have baen dese
cribed in ERES,

The language is syntgctically simple snd uses ftamilar cone
structs, The modularization tocls seem rather weak, oparticularly
1Y one wishes to describe a‘hierarchy. This will hurt both the

clarity of descriptions arc their fidelity,

AHPL

AHPL can describe recister transfer and switchina circuit
level operations, and provides a completely general paralilelism
construct, However, the weakness of the modularjzation cone
structs will auickly become more and more of a orovlem ag the
size of 8 description grows, This combined with its provision of
high=level operators, makes the language mainly useful for beha=
vioral system specifications, The language is simple, but wuses
specis)l characters which may not be sugqestive or familyar to
users, Also, because of the nroblems with wmoaularization citea
above, AHPL descriptions will have a hard time retaining fideljty

it they go helow the level of a specification,
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Summary

These non=nrocedural languages are rather similar to w@each
other, except for the rather distinctive characteristics of MQP,
rost ot the languages were developed for design, and oriented to=
ward describing the behavior of a system at any level of detail,
using RT level primitives, Vectors and matrices of bits are gen=
erally oupported with vectors of bits being used to hold in=
tegers, Except for MOP, ro lancuage provides format description
tools, Renaming and some restricted form of indexing are ysually
provided to facilitate accessing parts of composite structures,
most languages providge for arbitrarily complex expressions with
addition, subtractiona boclean, relational, concatenation, and
complementation operations available for use within expressions,
Registers and terminals are aenerslly supoorted, along with
transfer, connection enc renaming assignments, Modularization
tools are ususlly limited, with combinatorial networks hbeing pro=
vided for structursl! moaularization end short action sequences
being definsbie for procedural modularization, Control con=
structs are limited, but each provides some facility for alterna=
tion., Most languages support clocks as 8 tool for describing @
system’s behavior with respect to time, The lanpuages are gener=
ally restricted to the RT level or RYT and sgwitching circuit lev=
els of cdescription, The langyaaes are usually simple and ususlly
provide familiar facilities, weak modulerization tools, and are
limited in how closely a description can follow the structure of

an implementetion,
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CDL {s distinguished bv its QCHQPD‘]V’1ON level, as seen in

its requirement for sirple expressions, and is mainly auitable
for an implementation level description, UhDL, Cassandre, ang
AHPL are the only lanquages to support structural iteration ang
bookkeepring variables, DOL and AKHPL are the only lanouages to
provide for use of undefinea components an- they are also unique
in supporting delays, [Vl and Cassancre are the onlv lamauages
to support stete encodings, They also provide the more powerful
modularization tools, Consistent with its focus on the specifi=
cation level, AHPL provides a rich array ot high level operator
and 3 wide variety of carriers, inclycing some that are rather
useful for synchronization with other systems, [t is uynfortunate
that it uses such unfamiliar synactic forms for its constructs,
MOP's concern with code aeneration anplicatinsn appears in rany
Wways, including its high level; lack of constraints on ocrata
types, accessing modes and operators; Jlack of terminals: its
form of modularization; and the insistence on time and space re-

quirements for {nstructiors,




Exclusions

This comparison was made as a part of a project investigat=~

ing corpiler retargeting, and therefore mainly examined those
languages that would be useful in a retargetable compiler system,
Flowware was therfore excluded from the study since it is basea
or grephic inout and the retargetable would require textual
input, LOGAL, evidently very usefui‘ﬁt Univac for cesign, was

too low level and lacked the extention capabflity necessary to

provide information needec for compilation,

A-40

i




Interesting but Incomplete Languages

This section aiscusses two languages which are intended for
wide utility and esse of vse, The larguaces ConrlLan amo RTS II1
are not yet complete and therefore canmrot yet be exhaustively

compared to the other languages in the study,

ConLan

Conlan is being developed by the Conference on Computer
Hardware Description Languasges and is intended to be suitaple for
811 CHDL applications [(Pil77)., The group has been working on
this rather ambitious task since September, 1973, 1Its latest re=
port was distributed in June of 1978, To try to be wuseful for
#1) applications, Conlan must be aple to describe systems on seve=
eral levels of descriptior and at various levels of detqi‘.

This breadth of levels is beina attempted through definttion
of a cprimitive, low level language, Primitive Set ConlLan, for
which some very powerful! composition ano type definition cone=
structs are defined, 'These composftion and definition tools ere
then to be ugsed to defime more opowerful! and useful languages,
One gosl is to stendardize the definitions of these more powerful
languages in addition to their being defined {n terms of the same
primitive )anguage,

The ConLan working group has also rrapnsed a two=tiered des
finition of ¢time with "virtual®™ time steps within a "real™ time
step, This will hopefully be sufficient for the reeds 0f any aoe

plication,
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The above concepts asre presently only proposals of the
Conference Working Group end have not been adopted by the Confere
ence on CHDL's as & whole., HMuch work still remains in complctiﬂq
the orimitive base and the specifying the various epplication

langueges based on it,

RTS 11I

RTS 1I1 {s being developed by Robert Piloty and his cowork=
ers in Darmstadt [Pi17S), They are focusing on the need for vear=
fous modularization tools in a CDL that is to be used in e wide
variety of Applications and in all stages of desion and implemen=
tation of a system, Current proposals foentify externally con=
trollied modules, automatons, open sequences ana combinatorial
networks, The different cgesignations allow some checking of the
body of & module to be sure it has certeain formsl properties,
The constructs are auite genera! and modules cen be nested to any
aepth, A powerfu) macre=like tacility is defined to facilitete
the use of similar components in different parts of a system,

In addition to the segmentation coqstructs. the basic state~
ment sytax and semantics have been defined, The lanquege is be-
sicly non=procedursl, with event conditions controlling groups of
actions, There is also ar allowance for procedurasl descriptions,
Registers and terminals are supprorted and can be declared as
input, output, or local, In sddition, structural iteration and

bookkeeping varfables are supported,
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Conclustiors, Remarks

The number and varjety of CHDL's proposeo and in use i8
staggering ana this study could net hope to be exhaustive, There
are at least as many languaqes and descriptive systams worthy of
close study es have been pregsented here, This study has,
however, identified some truly useful lanauages and some serious
flaws in others, Lenguace characteristics that are important to
specific aprlications have been discussed, For instance, MOP i3
well suited for driving code aeneration, 15P is by far the most
general ana flexible language presented, recommending {1t for a
broad range of applications, ana SMITt is easy te use ang wel)
suited for describing behavior for emulation,

In adaition to observations sbout fndividual lancuages, the
study has develored and refined » scheme for describina and com=
pering languages that will be useful for aceneral use, Thisg would
be useful i§n compiling descrintions of a larqe numher of
Janguages for reference. A svstem of deacription can elso helo
one see a language more clearly, atding lanquage desion ana se®

lection,
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Summary of Languages and Characteristics

The followina tables summarize the characteristics of the
orocedural eng noneprocedural lesnguages separately, with the fole
lowinag remarks applying to both tables, No languace allows re-
aundant descriptions untess f{t s specificly mentioned. Aatll
lanquages that proviae shift operators provide for shifts of vare
yina size and in both directions, Any of tnese languages can he
extended by the adaition of new date operators, so this is not
mentioned under “generality", In al) cases the reader should
rely on the main text for more detail and precision, these tables
are meant as a short overview, The following table defines some

of the terms and abreviations used in the summary table,
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TERM/ABBREVIATION

alternation
comb, net,

concat,

controlled scopes

decr,

inc,
modular,

RT
selection
spec, level

std., arith,

std, bool,

sto, rel,

'N‘.t. C'F.

DEFINITION

a construct analogqous to IF..THEN,.ELSE..
comtinatorial network
concatenation
ebility to control which modules may access
o variable
decrement operator
increment operstor
moagularization
register transtfer level of description
e construct analogous to CASE
specification level of deteall
standard arithmetic ooerators,
at least ¢, =, », andg /
standard boolean operators,
et least AND, OR, ana NOT
stardard relational overstors, at least
=, <, >, and their invergses

switching circuit level of description
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Appendix B:

A Comparative Study of Intermediate

Languages




An Intermediate Language (IL) represents a program while it is being
processed by a compiler, and allows communication of information about the
program between phases of the compiler. Whether a compiler consists of one
or of several physical passes, it can be thought of as a collection of several
logical phases. The first phase (ordinarily lexical analysis) inputs a
source program and outputs some intermediate language program. Other phases
will accept an IL program and output another, possibly in a different IL.
Eventually some phase accepts an IL and outputs the target language. The
form of these ILs, and the information carried along with them (symbol tables,
data flow information, etc.) depend on the functions of the phases that they
link. In designing a compiler, it is often convenient to use several ILs,
and to let their operators and storage mechanisms reflect the source language,
or the target language, or both. ILs may be dependent on the language struc-
ture, or on the host machine or both. These dependencies make it difficult

to retarget or adapt the compiler.

The use of a single, universal intermediate language has been proposed
to reduce compiler implementation effort by providing a standard interface
between the language dependent and machine dependent parts of a compiler
{Col74]). The three major advantages of a compiler built this wav are: the
compiler can be adapted to another language by changing only the language
dependent phases, it can be retargeted by rewriting the machine-dependent
phases, and a considerable part of the compiler (some optimizations, symbol
table routines, etc.) will be relatively constant. The major requirements
on a universal IL are that it should be independent of both the source lan-
guage and the target machine, and that it be flexible enough to represent all

the information that has to be communicated between phases of the compiler.

ILL Requirements

The first major requirement mentioned in the previous section is that a
universal IL be source language and target machine independent. Cne result

of this requirement is that the '"'level'”, or complexity of the operators and

storage descriptions, of the language be well placed between the source




languages and target languages that we are considering. Two obseryations
motivate this requirement. The first is that if the mismatch between the IL
and either the source or target languages is too great, the corresponding
translation will be difficult, and the second is that if the IL is too close
to either language, it will be dependent on it to some extent. It is diffi-
cult, if not impossible, to define a fixed, universal, intermediate language
{HW78]. Take for example, an implementation of FORTRAN on the PDP 11/780
VAX machine. The high level DO construct should remain a DO in the IL, since

1} knowledge of high level control constructs aid. global optimization and, 2)

the VAX has a single instruction which implements almost the entire coutrol of a

DO loop. However, handling such a peculiar control construct (from a modern
language viewpoint) makes the IL rather language dependent. Most ILs would
have it reduced to separate loop and test elements, which, of course, are
both hard on the global optimization and make the use of the DO instruction
on the VAX very hard tco implement. For these reasons, a universal IL must be
extendible. Extendibility will partially negate some benefits of having a

single fixed IL, but it will make the universal IL idea workable.

Another requirement for an intermediate language is that it be able to
represent all the information that has to be passed between the compiler
phases that it links. A single IL is desirable so that only a single support
system to read, write, and/or analyze it will be needed, and because a single,
convenient IL can provide a conceptual framework for the compiler. Therefore,
a universal IL should be able to represent not only the semantics of the lan-
guage, but also the information required for register allocation, code gen-
eration and optimization. It is also desirable that the language be suited

to the transformations required for optimization.

The level of an IL results from the selection of its operators and con-
trol constructs, and from its storage mechanisms. Since there is more common-
ality among the source languages we are considering than among the target

machines, a fairly high level representation for operators and control con-

structs is needed. Also, the retention of looping and conditional constructs




in the source language allows the compiler to retain information useful for
optimization. As for storage mechanisms, it is important to avoid the use
of specific accumulator registers or stack operations that are not machine

independent.

i
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Languages Considered

The intermediate languages considered in this report, with a brief de-

scription of each follow.
The JOCIT IL [ Dun75]!

The JOCIT IL was developed for compilers translating JOVIAL/J3 for a
number of machines. The language is high level and fairly language dependent.
It is a post-fix - polish language. Looping operators are included, and

symbols and their attributes are kept in a symbol table.
OCODE [ Ric71]

OCODE is the IL for Richards' BCPL compiler. It is language dependent,
has been used to retarget the compiler to from 1020 machines (as of 1974) and

is not well suited for stack machines.
HALMAT [ 11741

HALMAT is the IL for the Intermetrics HAL/S compilers. It is high-level
and language dependent. It uses explicit temporaries for intermediate re-

sults, and is machine independent.
JANUS [Col74, HW78, WH78, CPW74]

JANUS was designed as a universal IL. It provides a large set of opera-
tors and a flexible storage scheme, and it is extendible. Its control and
data structures are at a fairly low level, and it uses a stack for intermedi-
ate results. It is designed so that it can‘be translated to assembly code by
a macro processor, and some difficulty in handling temporary variables and

its lack of high level control constructs can be attributed to this.
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TCOL [(Cat78, SLN79]
ada

d

TCOL was designed by R. G. G. Cattell as a universal IL. The version
presented in his thesis is sketchy, and TCOLAda is an elaboration on it de-
veloped by the PQCC project at Carnegie-Mellon University. TCOL programs are
trees, with fairly high level data structuring and control flow operators.
PQCC's approach to universality is to introduce language or machine dependent
operators and data structures as needed (TCOLAda is the version tailored to
Ada) and to let the compiler-compiler produce a compiler tailored to that

version of TCOL.

IL Comparison

The table in this section gives the ILs mentioned above, and how well
each meets the requirements that have been defined. The text in this section

will elaborate on the entries in the table.
1. Source and Machine Independence

Since OCODE, HALMAT and the JOCIT IL were each designed with a
particular language in mind, they tend to contain assumptions about the source
languages operators, data types, parameter passing conventions, etc. and so
their language independence is low. JANUS was designed for language inde-
pendence, and its use in Pascal, Algol 68 and BCPL compilers confirm that this
goal was well met [HW79]. TCOL was also designed to be language independent,
and TCOLA
TCOLA

da Vvas designed as an IL for Ada. Much of the development of

da ¥as in the specification of data types, data structuring facilities,

control structures, etc. Since Ada has a rich set of these features, and

since TCOL is at a much lower level than Ada, TCOL
Ada Ada

independent. The structure of the IL and its external representation and

is fairly language

symbol handling are language independent.

The machine independence of all these languages is good, and all of

them except TCOL have been used in compilers for more than one machine.




The three language-dependent ILs are at a fairly high level, with

looping, alternative and procedure call constructs. JANUS has a mix of high
and low level features. 1Its control constructs are conditional jumps, itg
data structuring mechanisms are less complex than those of TCOL but more com-—
plex than those of most ILs, and its procedure call and parameter passing
mechanisms are very flexible. TCOL is the highest-level of the ILs con-
sidered. Its control constructs, data types, data structuring methods, and

operations have more flavor of Ada than of a machine language.

Jocit IL OCODE Janus TCOLAda HALMAT
Source Independence Poor Poor Good Fair Poor
Machine Independence Good Good Good Good Good
Level High High Medium High High
Temporary Storage Implicit Stack Stack Tree Explicit

Stack Temps
Extendibility No No Yes Yes No
Suitability for Fair Fair Fair Good Fair
Code Generation
Practical Experience Yes Yes Yes No Yes

Figure B.l1 1IL Comparison Chart
3. Temporary Storage
HALMAT uses explicit temporaries while the Jocit IL is a post-fix
polish language and so uses an implicit stack. Janus and OCODE use explicit
stacks and TCOL is a tree language, with temporary storage implicit in the
tree structure.

4, Extendibility

With enough effort any language is extendible, however, Janus and

TCOL were deéigned with extendibility in mind, while the other ILs were not.
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5. Suitability for Code Generation

This is discussed in the IL selection in Section 3 of this

report.
6. Practical Experience

HALMAT and the Jocit IL have each been used in commercial compilers
for more than one computer. OCODE has been used to transport the BCPL com- .
piler to a number of machines, and Janus has been used in several compilers

and an experimental number of machines. TCOLA a has not been used in a com-

d
piler to date, but will probably be used for one or more Ada compilers in

the near future.




Appendix C:

A MOP Description Example




{M6P file for Mini-S (simplified PDP-S)} Note: Comments are in

braces <).
£1-flds)[
(6P 0 3 0 9)
(I.BIT 310 C)
(ADR 4 8 0 ®B)
(T8.BITS 4 8 0 ©)
(UBITS 5 7 0 8)
(UCLASS 41 0 8) ]
4SBs ¥
(PC 1 8 P)
(Mp 256 12 M)
(Acc 1 12 G)
(I8.REG 1 8 R)
(L1 8R) ]
“AMsy [
%8: $1:48
ZMp: (<> Mp $1:#8 0 12)
Z@Mp: (<> Mp (<> Mp $1:8 0 12) 0 12)
%PC: (<> PC1 0 8)
Z%Acc: (<> Acc 1 0 12)
%L: (<> L10 8
%I8.REG?(<> IO.REG 1 0 8) ]
©Csy {
Y: (
%8 :: (EMITLS 0 01 $1 0)
ZMp ::  (EMITI5 1 01 S$1 1))
Z: (
Mp :: (EMITI5 1 01 $1 0) from R. G. G. Cattell [Cat7§)

%@Mp ::  (EMIT[5 2 01 $1 1))




’!'lll"lll...-.n----nnu ’ R - —
3
l
]

ST TEETEE T T A T T T e

I0: (
%8 :: (EMIT({6 0 0} $1) ) )
| [
£1-FMTsy
<FMT 1) (8P Z) €¢1-opnd format)
: £FMT 23} (8P Y) <jump format)
E <FMT 33 (8P UCLASS UBITS)<€micro format)
| <FMT 49 (OP 10) €IOT format)
i
l
E €6C-FMTs)
E €FMT 5) (ADR I.BIT) €Y and 2y
i £FMT 63 (I®.BITS) ] €18)
E fMops?|

(+- %ZAcc (AND Z%Acc S$1:2)) ::
(EMITIAND 1 1 1] 0 $1)

(+ %Acc (+ ZAcc $1:2)) ::
(EMITITAD 1 1 1] 1 81)

(; (« 81:Z (4 $1:2 1)) (=> (EQL $1:Z -1) (« $PC (+ %PC 1)))) ::
(EMITIISZ 1111 2 s1)

| (; & 51:Z %Ace) (< ZAce 0)) ::
(EMITIDCA 1 1 1] 3 $1)

(; (+ %L %ZPC) (« ZPC $1:Y)) ::
(EMITIJMS 2 1 1] 4 S1)

(« %ZPC S1:Y) ::
(EMIT{JMP 2 1 1§ 5 $1)

c-2




(+ ZI0.REG I0)
(EMIT{IOT 4 1 1] 6 $1)

(+ ZAcc (NBT ZAcc))
(EMIT[COMA 3 1 11 7 0 40)

(+ %ZAcc 0)
(EMITiCLRA 3 1 11 7 0 20)

(+ %Acc (+ ZAcc 1))
(EMIT{INCA 3 1 1] 7 O 10)

(+ %Acc (- %Acc 1))
(EMITIDECA 31 1] 7 0 4)

(< %Ace (* ZAcc 1))
(EMIT SLA[3 1 1] 701) )

(NG.6P)
(EMITINGP 3 1 1] 7 0 0)

’ (*‘ %Acc 1)
i (EMIT(SETIA 31 11 7 0 30)

(¢« ZAcc 2)
(EMITISET2A 3 1 1] 7 0 31)

(« ZPC ZL)
(EMITIRTS 3 1 11 7 1 40)

(¢« ZPC %Acc)
(EMITIJMPA 3 1 1] 7 1 20)




T T e

(=> (LSS ZAcc 0 ) (« ZPC (+ %PC 1)))
(EMITISKPL 3 1 1! 7 1 4)

(=> (EQL ZAcc 0) (« ZPC (+ %ZPC 1)))
(EMITISKPE 3 1 1] 7 1 5)

(=> (NEQ ZAcc 0) (« ZPC (+ 7ZPC 1)))
(EMITI{SKPNE 3 1 1] 71 2)

(=> (GTR Z%Acc 0) (« ZPC (+ ZPC 1)))
(EMIT{SKPG 31 1] 71 1)

(=> (LEQ Z%Acc 0) (« %ZPC (+ ZPC 1)))
(EMIT(SKPLE 3 1 11 7 1 6)

(=> (GEQ %Acc 0) (+ ZPC (+ %PC 1)))
(EMIT[SKPGE 3 1 1] 71 3)




MISSION
of
Rome Air Development Center

RADC plans and executes /Luewcch development, test and
selected acquisition programs in Auppou: 0§ Command, Controf
Communications and Intelligence (C31) activities. Technical
and engineening suppornt within areas of technical competence
48 provided to ESD Program Offices (P04) and other ESD
elements. The principal technical mission areas are
communications, electromagnetic guidance and control, sur-
veillance of ground and aerospace objfects, LM@&LLQence data
collection and handling, information system technology,
Lonosphernic propagation, solid state sciences, microwave
physics and electronic reliability, muntcumbo&uty and
compatibility.
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